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Abstract 

Developments in the theory of heat load broadening by entrainment of the stable SOL by pedestal turbulence is 

presented. Turbulent and neoclassical effects add in quadrature to set 𝜆𝑞. The SOL intensity is determined by matching the 

turbulence energy flux from the pedestal to SOL. Explicit expressions are derived for 𝜆𝑞 for modest and strong broadening. 

Scalings of 𝜆𝑞 with 𝑅, 𝐵𝜃, 𝑇𝑠𝑒𝑝, 𝑞 and spreading flux are determined. A fundamental limit on the extent of 𝜆𝑞 broadening is 

suggested. Spreading fluxes for drift wave and ballooning mode turbulence in the pedestal are derived and used to show that 

interesting levels of SOL broadening can be achieved for tolerable pedestal fluctuation levels. A simple treatment of the 

unavoidable departures from the realm of mean field theory is proposed. 

1. THE PROBLEM 

Edge transport barriers are supported by strong 𝐸 × 𝐵 shear layers at the separatrix, and typically manifest high 

edge temperatures as compared to ordinary L-mode plasmas. The resulting increased edge temperatures generate 

strong SOL 𝐸 × 𝐵 shear, of the form 𝑣𝐸
′ ∼ 3𝑇𝑒/𝜆2|𝑒| , where 𝜆 is the SOL width (𝜆 = 𝜆𝑞 here) [1]. Note that 

edge temperature and 𝜆𝑞 entirely determine the SOL 𝐸 × 𝐵 shear strength. In turn, the strong SOL 𝐸 × 𝐵 shear 

quenches the SOL turbulence which generally defines the SOL width in L-mode. The latter is given by the 

familiar expression 𝜆2 ∼ 2𝐷⊥𝜏𝑑 , where 𝜏𝑑  is the SOL ‘dwell time’ 𝜏𝑑 = 2𝑅𝑞/𝑐𝑠  and 𝐷⊥  is the perpendicular 

turbulent diffusivity driven by SOL modes. Quenching of turbulence generated in the SOL reveals the residual 

neoclassical processes. These define the Heuristic Drift expression [2] for the SOL width 𝜆𝑞 ∼ 𝑣𝐷𝜏𝑑, and its 

counterpart for the conductive regime. Here 𝑣𝐷 ∼ 𝜌𝑠𝑐𝑠/𝑅  is the magnetic drift velocity. Alternatively put, 

draining the swamp of L-mode turbulence uncovers Goldston HD scaling. In addition, the strong 𝐸 × 𝐵 shears 

at the separatrix inhibits the penetration of pedestal turbulence into the SOL, though such turbulence spreading 

is still possible. Indeed, even in L-mode, turbulence spreading and intermittency have been shown to impact 

SOL widths [3]. The upshot is the HD model—a neoclassical scaling for 𝜆𝑞. This prediction has the dubious 

distinction of being both exceedingly pessimistic (𝜆 ∼ 𝜖𝑇𝜌𝜃𝑖
) and remarkably successful. Thus, the heat load 

problem and the need to find a way to broaden 𝜆𝑞 have emerged as high priority issues for MFE. The theoretical 

problem is ultimately one of determining the scaling trends for the broadened 𝜆𝑞. Limits on broadening are of 

particular interest. 

2. A SOLUTION 

Spreading of turbulence from the pedestal to the SOL is a possible solution of the heat load problem [4]. 

‘Turbulence spreading’ is the transport of turbulence intensity by nonlinear scattering, and may be thought of as 

the real space transfer counterpart of the familiar story of cascading in 𝑘-space [5]. Turbulence spreading is 

sometimes referred to as ‘entrainment’. A simple, familiar example of spreading is the cross-track expansion of 

a turbulent wake, downstream of a moving object. The wake expansion is a consequence of the invasion of 

laminar fluid by turbulence generated because of the object’s passage. Spreading is energized by the object’s 

motion against drag. This process is sketched in Fig. 1. 

In the case of pedestal→SOL spreading, the turbulence energy flux at the separatrix is of central importance. It 

must be strong enough to overcome the edge barrier, and sufficient to energize the SOL against strong damping 
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due to 𝐸 × 𝐵 shear and sheath effects. These requirements constrain the class of viable turbulent pedestals. And 

they highlight the critical issue of the trade-off between SOL broadening and confinement degradation.  

While a few simulation papers have alluded to turbulence spreading effects on 𝜆𝑞, none have progressed beyond 

the level of ‘proof by color pictures’. No detailed theoretical or computational analysis of the relevant physics 

has been offered until after the publication in ref. [4] of the theoretical analysis described here. 

In this paper we present the theory of SOL broadening by pedestal turbulence. The analysis proceeds in three 

stages: 

(a) Part 1: Calculating 𝜆𝑞 for a turbulent SOL—in which we unite fluctuations and the neoclassical processes 

of the HD model. 

(b) Part 2: Calculating SOL turbulence driven by spreading—in which we link SOL turbulence and 𝜆𝑞 to the 

spreading flux, which originates from the separatrix. 

(c) Part 3: Relating the spreading flux to pedestal properties—in which we link the resulting 𝜆𝑞 to turbulence 

properties and turbulence structure. 

2.1. Part 1: 𝝀𝒒 for a Turbulent SOL 

To calculate the width of a stable SOL, consider the equation of motion for a particle undergoing magnetic drift 

𝑣𝐷 and turbulent ‘kicks’ (𝑣̃𝑟), so 

𝑑𝑟

𝑑𝑡
= 𝑣𝐷 + 𝑣̃𝑟 . (1𝑎) 

A simple calculation or a Fokker-Planck analysis then gives 𝛿2—the mean square excursion—as: 

𝛿2 = 𝑣𝐷
2 𝜏𝑑

2 + ⟨𝑣̃𝑟
2⟩𝜏𝑐𝜏𝑑 , (1𝑏)  

where 𝜏𝑐 = ∫ 𝑣̃𝑟(0)𝑣̃(𝜏)𝑑𝜏
∞

0
/|𝑣̃𝑟(0)|2 is the turbulent correlation time. Since 𝜏𝑐 > 𝜏𝑑 is unphysical and 𝜏𝑐 < 𝜏𝑑 

suggests very strong turbulence—which is irrelevant to this study—we take 𝜏𝑐 ∼ 𝜏𝑑. Thus 

𝛿2 = 𝑣𝐷
2 𝜏𝑑

2 + ⟨𝑣̃𝑟
2⟩𝜏𝑑

2

= 𝑣𝐷
2 𝜏𝑑

2 + 𝑒𝜏𝑑
2 . (1𝑐) 

So: 

𝜆𝑞
2 ≡ 𝜆𝐻𝐷

2 + 𝜆𝑇
2 , (1𝑑) 

where 𝜆𝑇
2 = 𝑒𝜏𝑑

2 is the square of the turbulent width and 𝑒 is the SOL turbulence energy density. Note Eqn. (1d) 

is the outcome of a simple random walk argument, with the recognition that 𝜏𝑐 ≤ 𝜏𝑑 . At this point, the 

expression for 𝜆𝑞 is formal, since we have yet to calculate 𝑒, the SOL turbulence field. In the next section, we 

relate 𝑒 to the spreading flux from the pedestal. 

2.2. Part 2: Calculating the SOL Turbulence (𝒆) and 𝝀𝒒 Driven by Spreading. 

We now express SOL fluctuation levels in terms of the influx of pedestal turbulence into the SOL. Employing a 

one-dimensional 𝐾 − 𝜖 type model for the turbulence energy field 𝑒 gives: 

𝜕𝑡𝑒 = 𝛾𝑒 − 𝜎𝑒1+𝜅 − 𝜕𝑥Γ𝑒 . (2) 

Here 𝛾 is the growth rate, so 𝛾 < 0 in the stable SOL, due to 𝐸 × 𝐵 shear and sheath effects. 𝜎𝑒1+𝜅 is a model 

of nonlinear-dissipation, with 𝜎  a coefficient set by the underlying turbulence model. Here 𝜅 ∼ 1 for weak 

turbulence while 𝜅 ∼ 1/2 for strong turbulence. Γ𝑒 refers to the flux of turbulence energy—i.e., the spreading 

FIG. 1. Sketch of wake expansion due to turbulence spreading. The width 

of the turbulent region 𝑤(𝑥) expands with downstream distance 𝑥. 
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flux. Note that Γ𝑒 is simply an energy flux, and is not approximated by a Fickian form. Of course, the model of 

Eqn. (2) is minimal, and could be extended to 2D (in radius and along field line), with improved treatment of 

production, nonlinear dissipation, etc. 

Integrating Eqn. (2) from the separatrix to the turbulence energy field width (i.e., the layer width for 𝑒—which 

is simply 𝜆𝑇), and taking 𝑒 as constant in the thin SOL layer gives, for 𝜕𝑒/𝜕𝑡 = 0, 

Γ𝑒,0 + 𝜆𝑇𝛾𝑒 = 𝜆𝑇𝜎𝑒1+𝜅 . (3) 

Here Γ𝑒,0 = Γ0 hereafter is the flux of turbulence energy across the separatrix, from the pedestal to the SOL. 

Beyond the SOL, Γ𝑒 → 0, so there is no spreading outflow from the SOL. Γ0 is the “spreading drive”, and is the 

single control parameter in the theory characterizing the process of turbulence spreading. Obviously Γ0  is a 

functional of pedestal profiles and parameters. Note that Γ0 will be determined by pedestal turbulence localized 

slightly inside the separatrix. Eqn. (3) states that nonlinear damping in the SOL balances local growth and 

spreading drive. Thus, for the relevant case of 𝛾 < 0 (stable SOL): 

Γ0 = 𝜆𝑇|𝛾|𝑒 + 𝜎𝜆𝑇𝑒1+𝜅 , (4) 

so spreading drive is ultimately balanced by linear damping (due damped SOL modes!) plus nonlinear 

dissipation. Of course, we will have: 

𝜆𝑞
2 = 𝜆𝐻𝐷

2 + 𝑒𝜏𝑑
2 = 𝜆𝐻𝐷

2 + 𝜆𝑇
2 . (5) 

Equations (4,5) constitute a simple, closed minimal model of turbulent SOL broadening. 

Equations (4,5) may be solved analytically in the limits where either linear or nonlinear damping predominate. 

These correspond to weak and strong broadening, respectively. 

For linear damping dominant, Eqn. (4) gives Γ0 ≈ |𝛾|𝜆𝑇𝑒. But 𝜆𝑇
2 = 𝑒𝜏𝑑

2, so eliminating 𝑒 gives 

𝜆𝑇
3 = Γ0𝜏𝑑

2/|𝛾|, (6𝑎) 

and 

𝜆𝑞 = [𝜆𝐻𝐷
2 + (

Γ0𝜏𝑑
2

|𝛾|
)

2/3

]

1/2

, (6𝑏)

which is the broadened heat load width. Here |𝛾| is set by 𝐸 × 𝐵 shearing and sheath effects. Note that the 

increment to 𝜆𝑞
2  induced by spreading scales as (Γ0/|𝛾|)2/3—i.e., increasing with Γ0 and decreasing with SOL 

damping. This is intuitively plausible. For modest broadening, |γ| ∼ 𝑇𝑠𝑒𝑝/|𝑒|𝜆𝐻𝐷
2 . So high 𝑇𝑠𝑒𝑝 and high current 

inhibit SOL broadening. The current scaling of 𝜆𝑇 differs from that of 𝜆𝐻𝐷. 𝜆𝑇 ∼ Γ0
1/3

, so the dependence of the 

broadening upon spreading drive is modest. 

The cross over from the HD to broadened width regime occurs when (Γ0𝜏𝑑
2/|𝛾|)2/3 = 𝜆𝑇

2 > 𝜆𝐻𝐷
2 . This is 

equivalent to: 

[(
Γ0

|𝛾|
)

2/3

(
𝐵𝑇

𝐵𝜃

)
4/3 𝑟4/3

𝑐𝑠
4/3

] /𝜖𝑇
2𝜌𝜃

2 > 1. (7𝑎) 

The LHS of Eqn. (7a) scales as 

𝐿𝐻𝑆 ∼ Γ0
2/3

𝑅4/3𝐵𝜃
2/3

/𝑇𝑒,𝑠𝑒𝑝
2 , (7𝑏) 

so 

𝜆𝑇/𝜆𝐻𝐷 ∼ Γ0
1/3

𝑅2/3𝐵𝜃
1/3

/𝑇𝑒,𝑠𝑒𝑝 . (7𝑐) 

𝑇𝑒,𝑠𝑒𝑝  can be related to 𝑃𝑆𝑂𝐿 . Thus, larger machine size favors a broadened SOL, while higher separatrix 

temperature works against it. Sensitivity to spreading drive is modest. Higher current somewhat favors 

broadening beyond the HD prediction by squeezing 𝜆𝐻𝐷 relative to 𝜆𝑇. Γ0 can be expected to contain implicit 𝜌∗ 

scaling, which may off-set some of the explicit size scaling. Further study of the scalings of Γ0 is required. In 

particular, the 𝜌∗ scaling of the spreading flux remains a critical issue.  

For the limit where nonlinear damping is dominant, Γ0 ≈ 𝜆𝑇𝜎𝑒1+𝜅. Since once again 𝜆𝑇
2 = 𝑒𝜏𝑑

2 and 𝜆𝑞
2 = 𝜆𝐻𝐷

2 +

𝜆𝑇
2 , a similar calculation to that above gives the heat load width 
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𝜆𝑞 = [𝜆𝐻𝐷
2 + (Γ0/𝜎)

2
3+4𝜅𝜏𝑑

4(1+𝜅)
3+2𝜅 ]

1/2

, (8𝑎) 

for the nonlinearly damped limit. For 𝜅 = 1/2 (strong turbulence): 

𝜆𝑞 = [𝜆𝐻𝐷
2 + (Γ0/𝜎)2/5𝜏𝑑

3/2
]

1/2
. (8𝑏) 

For 𝜅 = 1 (weak turbulence): 

𝜆𝑞 = [𝜆𝐻𝐷
2 + (Γ0/𝜎)2/7𝜏𝑑

8/5
]

1/2
. (8𝑐) 

Finally, note that in the limit of strong broadening, the (likely appropriate) choice 𝜅 = 1/2 gives: 

𝜆𝑞 ∼ (Γ0/𝜎)1/5(𝑅𝑞/𝑐𝑠)3/4, (8𝑑) 

so 𝜆𝑞 ∼ 𝑅3/4𝐵𝜃
−3/4

𝑇𝑒,𝑠𝑒𝑝
−3/8(Γ0/𝜎)1/5. Once again, we find off-setting trends in size and separatrix temperature, 

and weak dependence on turbulence spreading flux. Indeed, the scaling of 𝜆𝑞 with Γ0 tends toward saturation as 

the layer broadens. This is consistent with expectations for strong turbulence regimes. 

It is perhaps appropriate to point out that while SOL broadening is clearly desirable for heat load management, 

too much broadening can be counter-productive, as it may induce an H→L back transition. To see this, recall 

that SOL 𝐸 × 𝐵 shear scales as 𝑣𝐸
′ ∼ 𝑇𝑒,𝑠𝑒𝑝/|𝑒|𝜆2 where 𝜆 ∼ 𝜆𝑞 is the SOL width. Thus, increasing 𝜆 weakens 

𝐸 × 𝐵 shear. SOL stability to interchange modes is maintained by 𝐸 × 𝐵 shear, with the marginality condition 

set by the balance of interchange drive with 𝐸 × 𝐵  shearing 𝑐𝑠/√𝑅𝜆 ≈ 𝑇𝑒,𝑠𝑒𝑝/|𝑒|𝜆2 . Thus for 𝜆𝑞 >

(𝑇𝑒,𝑠𝑒𝑝/|𝑒|𝑐𝑠)
2/3

𝑅1/3, SOL interchange turbulence can be excited. Brown and Goldston have suggested that for 

𝜆𝑞  broadening by collisions (i.e., as for conductive heat transport at high density), SOL interchange 

destabilization can trigger an H→L back transition following invasion of the pedestal turbulence. The associated 

interchange marginality condition correlates well with the H-mode density limit, which is initiated by such an 

H→L back transition. However, the proposed mechanism is far more general, and suggests a fundamental limit 

on the broadening of 𝜆𝑞 by turbulence spreading. Using Eqn. (8d) for 𝜆𝑞 , interchange stability requires (Γ0/

𝜎)1/5(𝑅𝑞/𝑐𝑠)3/4 ≤ (𝑇𝑒,𝑠𝑒𝑝/|𝑒|𝑐𝑠)
2/3

𝑅1/3. This bounds Γ0 < Γ𝑚𝑎𝑥 , where 

Γ𝑚𝑎𝑥 ≅ (𝑇𝑒/|𝑒|𝑐𝑠)10/3𝑅5/3/(𝑅𝑞/𝑐𝑠)15/4𝜎, (9𝑎) 

so 

Γ𝑚𝑎𝑥 ∼ 𝑇𝑒,𝑠𝑒𝑝
85/24

/𝑅15/4𝑞15/4. (9𝑏) 

Interestingly, Γ𝑚𝑎𝑥  decreases with 𝑅 and 𝑞, and increases with 𝑇𝑒,𝑠𝑒𝑝. 𝛤𝑚𝑎𝑥  constitutes a fundamental limit on 

the spreading flux which can maintain a stable SOL. It is likely an upper bound on the flux, since spreading into 

a weakly damped or marginal region can be expected to result in strong excitation of turbulence. Clearly, the 

two-sided implications of strong SOL broadening merit further study. Fig.2 shows a plot 𝜆𝑞/𝜆𝐻𝐷 vs. Γ𝑒0 = Γ0, 

the spreading flux. The plot shows results with both linear and nonlinear damping, and with nonlinear damping 

alone. For the relevant first case, linear and nonlinear regimes are apparent, with a cross-over regime connecting 

them. Note that the tendency of 𝜆/𝜆𝐻𝐷 to approach saturation for large Γ0 is evident. Fig. 2 shows the crucial 

role of Γ0 as a control parameter for the SOL width.  

FIG. 2. 𝜆𝑞/𝜆𝐻𝐷 plotted vs. spreading flux 𝛤0 from the pedestal for 𝑞 = 4, 𝛽 = 0.001, 𝜅 = 1/2, 𝜎 = 0.6. 
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2.3. Part 3: Relating the Spreading Flux to Pedestal Properties 

Here, we estimate the spreading flux in terms of pedestal parameters and structure. This addresses the question 

of what exactly is Γ0. An additional concrete output of this analysis is the scaling of the pedestal fluctuation 

level needed to broaden the SOL. Some general comments are in order before proceeding to the calculation. 

(a) Pedestal turbulence located close to the separatrix necessarily has the greatest impact on SOL broadening. 

(b) The edge transport barrier (shear layer) will necessarily tend to inhibit spreading through the separatrix. 

(c) Pedestal turbulence with larger mixing length will be more effective for turbulence spreading. This favors 

larger scale modes. 

(d) Turbulence spreading into the SOL from the pedestal is almost certainly both convective and diffusive (i.e., 

driven by intensity gradient), and partly mediated by the dynamics of structures, such as blobs and voids. 

However, our understanding of how to actually calculate the non-diffusive flux is still developing. Hence 

this analysis is limited to a diffusive model of spreading. 

The mean flux of turbulence kinetic energy from the pedestal to the SOL is given by 

Γ0 = −𝜏𝑐𝑒𝜕𝑟𝑒 ≈ 𝜏𝑐𝑒2/𝑤𝑝𝑒𝑑 . (10) 

Here 𝜏𝑐 is the pedestal turbulence correlation time and 𝑤𝑝𝑒𝑑  is the pedestal width, which serves as an estimate of 

the scale of pedestal turbulence intensity. Fig. 7 of ref. [4] shows a sketch of diffusive turbulence spreading in 

the pedestal. Equation (10) can be simplified by considering diffusive scattering in the presence of shearing so 

as to elucidate 𝜏𝑐. The Kubo formalism gives: 

𝐷 = ∫ ⟨𝑣(0)𝑣(𝜏)⟩𝑑𝜏
∞

0

= ∫ 𝑑𝜏 ∑|𝑣𝒌|2 exp[−𝑘𝜃
2𝜔𝑠

2𝐷𝜏3 − 𝑘2𝐷𝜏]

𝒌

∞

0

. (11) 

Here 𝜔𝑠  is the shearing frequency. In the relevant strong shear limit, 𝜏𝑐
−1 = 𝑘2𝐷(1 + 𝜔𝑠

2𝜏𝑐
2)  and 𝐷 ∼

|𝑣|3/2𝑘−1/2𝜔𝑠
−1/2

. The pieces may then be assembled to yield 

Γ0 ≅ 𝜏𝑘
0.5𝜔𝑠

−0.5𝑒𝜕𝑟𝑒 ≅ 𝜏𝑘
0.5𝜔𝑠

−0.5𝑒2/𝑤𝑝𝑒𝑑 , (12𝑎) 

where  

𝜔𝑠 = 𝜕𝑟∇𝑝/𝑛|𝑒| ∼ (𝜌𝑖
2/𝑤𝑝𝑒𝑑

2 )Ω𝑖 . (12𝑏) 

Here 𝜏𝑘  is the eddy turn-over rate 1/𝑘|𝑣| . We have taken the 𝐸 × 𝐵  shear to be due to ∇𝑝 (i.e., neglected 

rotation). Note that Γ0 ∼ 𝜏𝑒𝑓𝑓𝑒2/𝑤𝑝𝑒𝑑, where 𝜏𝑒𝑓𝑓 ∼ (𝜏𝑘/𝜔𝑠)1/2, the geometric mean of the two time scales. 𝜌𝑖 

is the ion gyro-radius and Ω𝑖  the ion cyclotron frequency. Equations (12a, b) give a general expression for the 

spreading flux through the ETB shear layer to the SOL, for the case of electrostatic turbulence. Note also that 𝜌∗ 

dependence can enter both via the pedestal turbulence level and via the shearing frequency. 

At this point, Eqns. (12a, b) can be coupled to a pedestal turbulence model and used to calculate Γ0, which may 

then be inserted into Eqns. (6b) and (8a) to obtain 𝜆𝑞. We use the expressions for 𝜆𝑞 and Γ0 to determine the 

level of pedestal turbulence required to render 𝜆/𝜆𝐻𝐷 ≥ 1—i.e., the level required to broaden the layer beyond 

HD. For illustrative purposes, we consider both microturbulence (collisional drift waves) and ideal ballooning 

modes (representative of grassy ELMs, pedestal with large scale turbulence, etc.). The outcomes are formulated 

in terms of the fluctuation level required to broaden the layer. This result is a simple cost-benefit analysis of 

turbulent SOL broadening. Modest required fluctuation levels means that the cost is acceptable. High means that 

the cost is prohibitive. 

For drift waves, one expects the basic correlation time scaling 𝜏𝑐,0𝑣∗ ∼ 𝜌𝑖 , where 𝑣∗ is the diamagnetic velocity. 

Then using Eqns. (10, 12a, 12b) and taking the mixing length as scaling with 𝜌𝑖, we find the critical required 

fluctuation level scales as: 

𝑣̃𝑟/𝑐𝑠 ∼
|𝑒|𝜙̂

𝑇
∼ (

𝜌𝑖

𝑅
)

1/2

𝑞−1/4 (13𝑎) 

for the weak 𝐸 × 𝐵 shear limit. For the strong 𝐸 × 𝐵 shear limit 
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𝑣̃𝑟/𝑐𝑠 ∼
|𝑒|𝜙̂

𝑇
∼ (

𝜌𝑖

𝑅
)

1/2

𝑞−1/4(𝑤𝑝𝑒𝑑/𝜌𝑖)
−1/8

. (13𝑏) 

Note that in both expressions, the key factor is (𝜌𝑖/𝑅)1/2. This indicates that the minimal fluctuation level is not 

excessive. The (𝜌𝑖/𝑅)1/2 scaling also suggests that the critical levels of broadening can be achieved in larger 

devices, with higher toroidal field. Fig. 3 plots 𝜆𝑞/𝜆𝐻𝐷 vs. pedestal drift wave |𝑒|𝜙̂/𝑇 in cases of linear damping 

only, nonlinear damping only and combined damping. Of course, the linear damping only model fails for larger 

levels of |𝑒|𝜙̂/𝑇. The combined model clearly shows a weak fluctuation, linear regime, a cross-over regime, and 

a strong broadening regime. The cross-over regime is of greatest interest and relevance. Results indicate that 

broadenings of 𝜆𝑞/𝜆𝐻𝐷  from 3 → 5  are possible for modest fluctuation levels (|𝑒|𝜙̂/𝑇 ≤ 0.05) . These are 

understood to be for the level at the separatrix. Note this figure is a defacto ‘price list’ for the cost of SOL 

broadening. It tells the shopper what he must ‘pay’ in pedestal fluctuations and transport to ‘purchase’ a desired 

𝜆/𝜆𝐻𝐷. 

We now turn to the case of pedestal MHD turbulence, as found in Grassy ELMs or Turbulent QH-mode. For 

simplicity, we consider the case of weak ideal ballooning turbulence. Of course, the mode growth rate is  

𝛾𝑏
2 ∼ 𝜔𝐴

2(𝐿𝑝𝑐/𝐿𝑝 − 1), (14) 

where 𝜔𝐴 = 𝑣𝐴/𝑅𝑞, 𝐿𝑝 is the pressure gradient scale length, and 𝐿𝑝𝑐 is the critical gradient. Then 𝜏𝑐,0 ∼ 1/𝛾𝑏 

gives 

𝜔𝑠𝜏𝑐,0 = √𝛽𝑞𝑅𝜌/𝑤𝑝𝑒𝑑
2 (𝐿𝑝𝑐/𝐿𝑝 − 1)

1/2
. (15) 

Turbulence levels are simply 𝑣̃ ∼ 𝛾Δ, where Δ is the radial displacement associated with the ballooning mode. 

Results are formulated as the degree of super-criticality required to achieve broadening.  

For Grassy ELMs, this margin should be small. The results are: 

weak 𝐸 × 𝐵 shear:     
𝐿𝑝𝑐

𝐿𝑝

− 1 ∼ (𝑞
𝜌𝑖

𝑅
)

4/3 𝑅2

𝑤𝑝𝑒𝑑
2  (

𝑤𝑝𝑒𝑑

Δ
)

8/3

𝛽, (16𝑎) 

strong 𝐸 × 𝐵 shear:    
𝐿𝑝𝑐

𝐿𝑝

− 1 ∼ (𝑞
𝜌𝑖

𝑅
)

10/7

(
𝑅

𝑤𝑝𝑒𝑑

)

16/7

(
𝑤𝑝𝑒𝑑

Δ𝑟

)
16/7

𝛽. (16𝑏) 

In both limits, the required supercriticality scales with (𝜌𝑖/𝑅)𝛼, 𝛼 > 1 and with 𝛽, and thus is seen to be quite 

modest. We see that a state of quasi-marginal ballooning turbulence is sufficient to achieve the cross-over level 

for SOL width broadening. And once again we note a 𝜌/𝑅 scaling which is favorable for future larger devices. 

FIG. 3. A typical case for DW: the normalized pedestal width 𝜆𝑞/𝜆𝐻𝐷 plotted against the 

normalized pedestal fluctuation level |𝑒|𝜙̂/𝑇. 
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Fig. 10a, b of ref. [4] shows 𝜆/𝜆𝐻𝐷 vs. the margin of supercriticality for weak and strong shear cases. Note 

broader modes (Δ/𝐿𝑝 larger) are more effective at spreading out the heatload.  

A few comments are in order here, to conclude section 2. 

(a) Sensitivity analysis reveals that those results are more sensitive to linear damping in the SOL than to the 

details of nonlinear scattering. 

(b) There is little difference between cases of weak and strong 𝐸 × 𝐵 shear. This is due to off-setting trends in 

𝜏𝑐 and 𝑤𝑝𝑒𝑑  in the expression for Γ𝑒,0. 

(c) Larger scale turbulence near the separatrix is more effective at SOL broadening. 

(d) The calculation of the spreading flux needs to be revisited, so as to incorporate intermittency effects. Recent 

simulations [6,7] and experiments [8] indicate that the spreading flux is strongly skewed, with skewness 

vanishing at a radius close to the separatrix. The turbulence exhibits spatio-temporal intermittency, and thus 

is a challenge to model. The turbulence exhibits spatio-temporal intermittency. Turbulence spreading into 

the SOL thus consists of positively skewed fluctuations, which may be thought of as ‘blobs’. The effects of 

these structures are not addressed by the diffusive spreading flux model employed here. Clearly, the Fickian 

model of the spreading flux is inadequate. A complete model of spreading remains an unfulfilled goal, and 

an important one. 

3. BEYOND MEAN FIELD THEORY 

Until now, the SOL broadening model has been formulated as a mean field theory. The central role of the mean 

spreading flux Γ0 as the key control parameter is the most evident symptom of this restriction. However, edge 

turbulence is intermittent, so the spreading flux can be expected to exhibit strong fluctuations. Thus, Γ𝑒 = ⟨Γ𝑒⟩ +

Γ̃𝑒, with |Γ̃𝑒| ≥ |⟨Γ𝑒⟩|—i.e., large fluctuations. Indeed, it’s likely that the 𝑝𝑑𝑓(Γ̃𝑒) is strongly non-Gaussian, with 

divergent second moment. Pulses or avalanches [9] then emerge as a natural description of the dynamics. 

Indeed, wake expansion has long been thought of as due to an ensemble of localized jets, leading to a rippled 

interface [10]. Here, we consider pressure fluctuations 𝛿𝑝 , with 𝛿𝑝 ∼ ∇𝑝 − ∇𝑝𝑐𝑟𝑖𝑡 , and with 𝛿𝑝 ∼ 𝛿𝑒 , so 

intensity pulses track avalanches. 𝛿𝑝 > 0  corresponds to ‘blobs’, and 𝛿𝑝 < 0  to ‘voids’. The theory of 

continuum avalanching is built upon a Burgers model, derived from considerations of a conserved order 

parameter and joint reflection symmetry. In its simplest form, the equation the equation for 𝛿𝑝 is 

𝜕𝑡𝛿𝑝 + 𝛼𝛿𝑝𝜕𝑥𝛿𝑝 − 𝜈𝜕𝑥
2𝛿𝑝 = 𝑠̃. (17) 

Here the nonlinear term represents steepening and 𝑠̃  is the driving noise source. 𝛼  is a model dependent 

coefficient. 𝛿𝑝 is ultimately realized as an ensemble of shock trains. 

Applicability to the SOL problem requires some additional elements in the model. Most important is that finite 

SOL dwell time 𝜏𝑑 = 𝜏 introduces dissipation and breaks order parameter conservation, and so is represented by 

a Krook damping term. Second, magnetic drift velocity must be retained, to recover HD physics for weak 

fluctuation levels. Noise is replaced by boundary flux fluctuations in time. These act as a source. The pulse 

model for the SOL then becomes: 

𝜕𝑡𝛿𝑝 + 𝑣𝐷𝜕𝑥𝛿𝑝 + 𝛼𝛿𝜕𝑥𝛿𝑝 − 𝐷0𝜕𝑥
2𝛿𝑝 + 𝛿𝑝/𝜏 = 0, (18𝑎) 

with  

𝛿𝑝(0, 𝑡) ∼ Γ̃𝑒,𝑠𝑒𝑝(𝑡). (18𝑏) 

𝐷0 is added for regularization. In the limit of weak fluctuations, Eqn. (18a) becomes 𝑣𝐷𝜕𝑥𝛿𝑝 + 𝛿𝑝/𝜏 ∼ 0 which 

sets a scale 𝜆 ∼ 𝑣𝐷𝜏 ∼ 𝜆𝐻𝐷. Thus, HD scalings are recovered. For scattering to matter, 𝛼𝛿𝑝 > 𝑣𝐷 is required. 

The structure of Eqn. (18a) is that of Burgers + Krook model, hereafter referred to as a ‘Krooked Burgers’ (KB) 

equation. A striking feature of the KB Eqn. (18a) is that due to Krook damping, a critical perturbation gradient 

at the boundary is required to form shocks, which survive penetration. Recall that for 

𝑑𝑝/𝑑𝑡 = −𝛿𝑝/𝜏 (19𝑎) 

with characteristic equation 

𝑑𝑥/𝑑𝑡 = 𝛼𝛿𝑝. (19𝑏) 
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Solution by method of characteristics gives: 

𝑥 = 𝛼 [𝑧 +
(1 − 𝑒−𝜖/𝜏)

1/𝜏
𝑓(𝑧)] , (19𝑐) 

where 𝑓(𝑧)  is set by boundary data. Shocks occur for 𝑓′(𝑧) < −1/𝜏 . This condition states that the initial 

perturbation slope (i.e., slope at the separatrix) must be sufficiently steep so as 𝛿𝑝 will shock before damping, in 

a dwell time. This sets a pulse formation criterion 𝛼𝜕𝛿𝑝/𝜕𝑥|𝑠𝑒𝑝 < −1/𝜏, which is defined by the (very variable 

and intermittent!) size of the perturbation gradient at the separatrix. Perturbations which satisfy the criterion will 

propagate as coherent structures (shocks) into the SOL with a finite penetration length. Perturbations which do 

not satisfy the criterion will rapidly decay and evaporate, with only weak penetration. SOL broadening will be 

determined by the population of penetrating coherent structures. The aim of the theory, then, is to characterize 

the statistics of the pulses and penetration depth distribution in terms of the 𝑃𝑑𝑓(𝜕𝑥𝛿𝑝) at the separatrix. Utility 

demands that the latter must ultimately be related to macroscopics. Note that the penetration depth distribution is 

analogous to the calculation of 𝜆𝑇  in terms of Γ0  in mean field theory. Likewise, relating the 𝑃𝑑𝑓(𝜕𝑥𝛿𝑝) to 

macroscopics is analogous to the calculation of the spreading flux Γ0  in terms of pedestal parameters and 

properties. In both formulations the latter part of the problem is more difficult. Characterizing the statistics is 

thus a challenging problem, requiring significant future effort. 𝐸 × 𝐵 shear can be included by formulating a 2D 

version of the theory—a double Krooked Burgers model. 𝐸 × 𝐵 shear is well known to impact intermittency 

[11], spreading and structure populations. Finally we remark that the incidence of spreading and avalanching 

driving SOL turbulence suggests that SOL profiles are likely not pure exponentials [12]. 

ACKNOWLEDGEMENTS 

We thank Zeyu Li, Nami Li, Rongjie Hong, Ting Long, Xi Chen, G. Tynan, Filipp Khabanov, Zheng Yan, G. 

McKee, X-Q Xu, and Jose Boedo for many interesting discussions and for collaboration on related works. This 

research was supported by DOE under Grant No. DE-FG02-04ER54738. 

REFERENCES 

[1] BROWN, A.O., GOLDSTON, R.J., Generalization of the Heuristic Drift SOL model for finite collisionality and effect 

on flow shearing rate vs. interchange growth rate, Nucl. Mater. Energy 27 (2021) 101002. 

[2] GOLDSTON, R.J., Heuristic drift-based model of the power scrape-off width in low-gas-puff H-mode tokamaks, Nucl. 

Fusion 52 1 (2011) 013009. 

[3] WU, T., DIAMOND, P.H., et al., How turbulent transport broadens the heat flux width: local SOL production or edge 

turbulence spreading? Nucl. Fusion, 63 12 (2023) 126001. 

[4] CHU, X., DIAMOND, P.H., GUO, Z.B., SOL width broadening by spreading of pedestal turbulence, Nucl. Fusion, 62 

6 (2022) 066021. 

[5] HAHM, T.S., DIAMOND, P.H., Mesoscopic transport events and the breakdown of Fick’s law for turbulent fluxes, J 

Korean Phys Soc 73 (2018) 747-792. 

[6] LI, Z., et al., Nat. Commun., submitted (2023). 

[7] Li, N., et al., Nucl. Fusion, submitted (2023). 

[8] KHABANOV, F., et al., “Statistical properties of turbulence at the edge of DIII-D L-mode positive and negative 

triangularity plasmas”, presented at US Transport Task Force on Boundary/SOL, Madison, 2023. 

[9] DIAMOND, P.H., HAHM, T.S., On the dynamics of turbulent transport near marginal stability, Phys. Plasmas 2 10 

(1995) 3640-3649. 

[10] TOWNSEND, A.A., Momentum and energy diffusion in the turbulent wake of a cylinder, Proc. R. Soc. A: Math. Phys. 

Eng. Sci. 197 1048 (1949) 124-140. 

[11] BOEDO, J.A., RUDAKOV, D.L., et al., Transport by intermittency in the boundary of the DIII-D tokamak, Phys. 

Plasmas 10 5 (2003) 1670-1677. 

[12] DIAMOND, P.H., “The SOL as a Turbulence-Driven Boundary Layer: Implications for Heat Load Scalings”, 

CO06.00004, presented at APS-DPP on Divertor & Scrape-Off-Layer, remote, 2020. 


