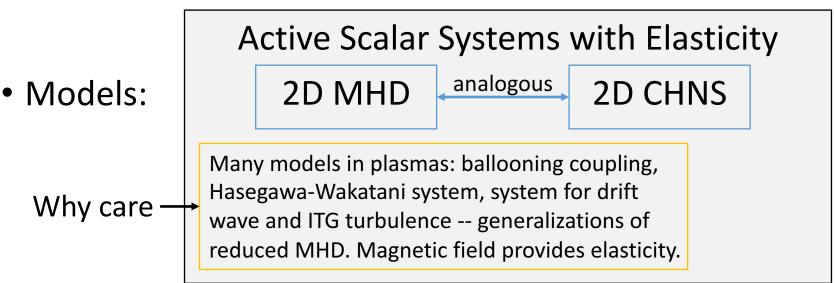
Cascades, Spectra, Real Space Structure, Inhomogeneous Mixing and Transport in Active Scalar Turbulence

Xiang Fan

Department of Physics University of California, San Diego

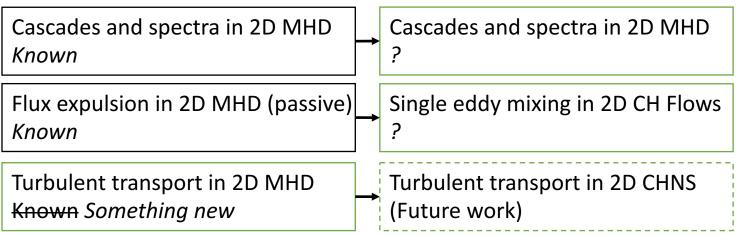
This research was supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-04ER54738.

Overview



Roadmap: 2D MHD

2D CHNS



Outline

Introduction

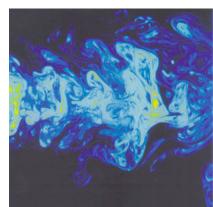
- Active Scalar Systems with Elasticity
 - 2D MHD (MagnetoHydroDynamics)
 - 2D CHNS (Cahn-Hilliard Navier-Stokes)
- Some Challenges
- Cascades and Spectra in 2D CHNS
- Single Eddy Mixing in 2D Cahn-Hilliard Flow
- Turbulent Transport in 2D MHD
- Conclusions and Future Works

Active Scalar Systems with Elasticity

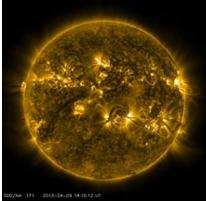
 Most fundamental system exhibiting turbulence: Navier-Stokes Equation

$$\partial_t \vec{v} + \vec{v} \cdot \nabla \vec{v} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} + \bar{f}$$

- Passive scalar system: no feedback on fluid motion
 - E.g.: Colorant.
- Active scalar system: with feedback on fluid motion
 - E.g.: MHD, CHNS. Both with Elasticity.



Credit:http://gdr-turbulence.eclyon.fr/oldsite/Cargese/Cencini.pdf



Credit:https://en.wikipedia.org/wiki/Mag netohydrodynamics

2D MHD (MagnetoHydroDynamics)

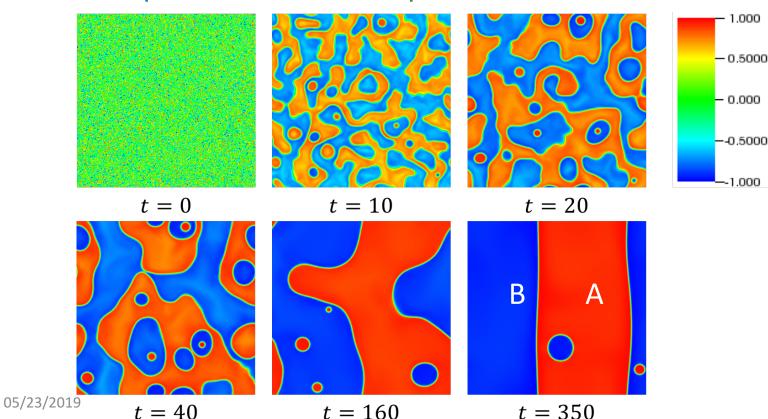
- MHD: describes the macroscopic behavior of plasmas; widely used to model plasmas in Tokamaks, and in astrophysics .
- 2D MHD:

$$\partial_t A + \vec{v} \cdot \nabla A = \eta \nabla^2 A$$
$$\partial_t \omega + \vec{v} \cdot \nabla \omega = \frac{1}{\mu_0 \rho} \vec{B} \cdot \nabla \nabla^2 A + \nu \nabla^2 \omega$$

• 2D MHD closely related to reduced MHD (strong B_0 in z direction in 3D). Important in plasma physics: many models are generalizations of reduced MHD.

2D CHNS (Cahn-Hilliard Navier-Stokes)

- The Cahn-Hilliard Navier-Stokes (CHNS) system describes <u>separation of components</u> for binary fluid (i.e. <u>Spinodal</u> <u>Decomposition</u>)
- Miscible phase -> Immiscible phase



2D CHNS

- How to describe the system: the concentration field
- $\psi(\vec{r},t) \stackrel{\text{\tiny def}}{=} [\rho_A(\vec{r},t) \rho_B(\vec{r},t)]/\rho$: scalar field
- $\psi \in [-1,1]$
- CHNS equations:

$$\partial_t \psi + \vec{v} \cdot \nabla \psi = D\nabla^2 (-\psi + \psi^3 - \xi^2 \nabla^2 \psi)$$
$$\partial_t \omega + \vec{v} \cdot \nabla \omega = \frac{\xi^2}{\rho} \vec{B}_{\psi} \cdot \nabla \nabla^2 \psi + \nu \nabla^2 \omega$$

• 2D MHD and 2D CHNS: analogous. Elasticity; elastic wave; conserved quantities; cascades; etc.

Challenges – Dual Cascade

- Some key issues to understanding active scalar turbulence:
 - 1. the physics of dual (or multiple) cascades;
 - 2. the nature of "blobby" turbulence;
 - 3. the effects of negative diffusion/resistivity;
 - 4. the understanding of turbulent transport.
- 1. Dual Cascade
 - Physics of dual cascades and constrained relaxation → relative importance, selective decay...
 - Physics of wave-eddy interaction effects on nonlinear transfer (i.e. Alfven effect ←→ Kraichnan)
 - How do dual cascades interact?

Challenges – Blobby Turbulence

- 2. "Blobby Turbulence"
 - Blobs observed in SOL in Tokamaks.
 - CHNS is a naturally blobby system of turbulence.
 - What makes a blob a blob?
 - What is the role of structure in interaction?
 - How to understand blob coalescence and relation to cascades?

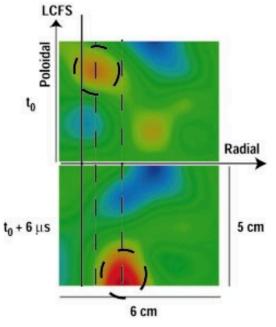


FIG. 4. (Color) Two frames from BES showing 2-D density plots. There is a time difference of 6 μ s between frames. Red indicates high density and blue low density. A structure, marked with a dashed circle and shown in both frames, features poloidal and radial motion.

[J. A. Boedo et.al. 2003]

Spinodal Decomposition

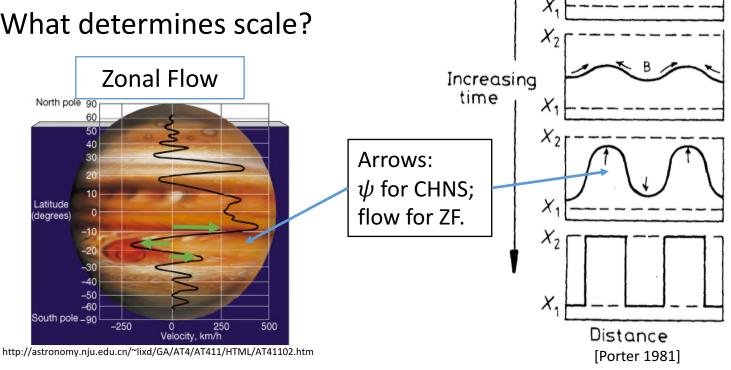
XR

 X_{2}

 X_0

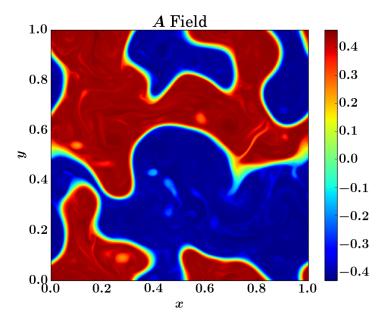
Challenges – Negative Diffusion

- 3. Zonal flow formation \rightarrow negative viscosity phenomena
 - ZF can be viewed as a "spinodal decomposition" of momentum.
 - What determines scale?



Challenges – Turbulent Transport

- 4. Turbulent transport
 - Suppressed in 2D MHD by magnetic field.
 - Previous understandings: mean field theory
 - New observation: blob-and-barrier structure
 - Need new understanding

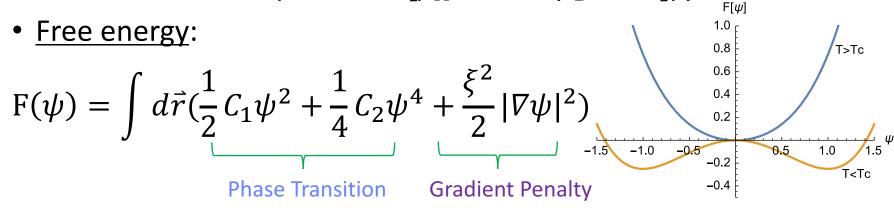


Outline

- Introduction
- Cascades and Spectra in 2D CHNS
 - X. Fan, P. H. Diamond, L. Chacón, and H. Li, Phys. Rev. Fluids **1**, 054403 (2016).
- Single Eddy Mixing in 2D Cahn-Hilliard Flow
- Turbulent Transport in 2D MHD
- Conclusions and Future Works

A Brief Derivation of the CHNS Model

- Second order phase transition \rightarrow Landau Theory.
- <u>Order parameter</u>: $\psi(\vec{r}, t) \stackrel{\text{\tiny def}}{=} [\rho_A(\vec{r}, t) \rho_B(\vec{r}, t)]/\rho$



- $C_1(T), C_2(T).$
- Isothermal $T < T_C$. Set $C_2 = -C_1 = 1$:

$$F(\psi) = \int d\vec{r} \left(-\frac{1}{2}\psi^2 + \frac{1}{4}\psi^4 + \frac{\xi^2}{2}|\nabla\psi|^2\right)$$

A Brief Derivation of the CHNS Model

- Continuity equation: $\frac{d\psi}{dt} + \nabla \cdot \vec{J} = 0.$
- Fick's Law: $\vec{J} = -D\nabla\mu$.
- Chemical potential: $\mu = \frac{\delta F(\psi)}{\delta \psi} = -\psi + \psi^3 \xi^2 \nabla^2 \psi$.
- Combining \rightarrow Cahn Hilliard equation: $\frac{d\psi}{dt} = D\nabla^2 \mu = D\nabla^2 (-\psi + \psi^3 - \xi^2 \nabla^2 \psi)$
- $d_t = \partial_t + \vec{v} \cdot \nabla$.
- Surface tension: force in Navier-Stokes equation:

$$\partial_t \vec{v} + \vec{v} \cdot \nabla \vec{v} = -\frac{\nabla p}{\rho} - \psi \nabla \mu + \nu \nabla^2 \vec{v}$$

• For incompressible fluid, $\nabla \cdot \vec{v} = 0$.

2D CHNS and 2D MHD	2D	CHNS	and	2D	MHD
--------------------	----	------	-----	----	-----

• 2D CHNS Equations:

$$\begin{aligned} \partial_t \psi + \vec{v} \cdot \nabla \psi &= D \nabla^2 (-\psi + \psi^3 - \xi^2 \nabla^2 \psi) \\ \partial_t \omega + \vec{v} \cdot \nabla \omega &= \frac{\xi^2}{\rho} \vec{B}_{\psi} \cdot \nabla \nabla^2 \psi + \nu \nabla^2 \omega \end{aligned}$$

	2D MHD	2D CHNS
Magnetic Potential	A	ψ
Magnetic Field	В	$\mathbf{B}_{oldsymbol{\psi}}$
Current	j	j_ψ
Diffusivity	η	D
Interaction strength	$\frac{1}{\mu_0}$	ξ^2

 $-\psi$: Negative diffusion term ψ^3 : Self nonlinear term

 $-\xi^2 \nabla^2 \psi$: Hyper-diffusion term

With $\vec{v} = \hat{\vec{z}} \times \nabla \phi$, $\omega = \nabla^2 \phi$, $\vec{B}_{\psi} = \hat{\vec{z}} \times \nabla \psi$, $j_{\psi} = \xi^2 \nabla^2 \psi$. $\psi \in [-1,1]$.

• 2D MHD Equations:

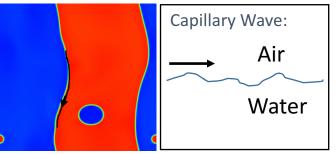
$$\begin{array}{l} \partial_{t}A + \vec{v} \cdot \nabla A = \eta \nabla^{2} A\\ \partial_{t}\omega + \vec{v} \cdot \nabla \omega = \frac{1}{\mu_{0}\rho} \vec{B} \cdot \nabla \nabla^{2} A + \nu \nabla^{2} \omega \end{array}$$

$$\begin{array}{l} \text{A: Simple diffusion term}\\ \end{array}$$

$$\begin{array}{l} \text{With } \vec{v} = \hat{\vec{z}} \times \nabla \phi, \, \omega = \nabla^{2} \phi, \, \vec{B} = \hat{\vec{z}} \times \nabla A, \, j = \frac{1}{\mu_{0}} \nabla^{2} A \end{array}$$

Linear Wave

• CHNS supports linear "elastic" wave:



- Akin to capillary wave at phase interface.
- Propagates <u>only</u> along the interface of the two fluids, where $|\vec{B}_{\psi}| = |\nabla \psi| \neq 0$.
- Analogue of Alfven wave in MHD (propagates along B lines).
- Important differences:
 - $\succ \vec{B}_{\psi}$ in CHNS is large only in the interfacial regions.
 - Elastic wave activity does not fill space.

Ideal Quadratic Conserved Quantities

- 2D MHD
- 1. Energy

$$E = E^{K} + E^{B} = \int \left(\frac{\nu^{2}}{2} + \frac{B^{2}}{2\mu_{0}}\right) d^{2}x$$

2. Mean Square Magnetic Potential

$$H^A = \int A^2 \, d^2 x$$

3. Cross Helicity

$$H^C = \int \vec{v} \cdot \vec{B} d^2 x$$

• 2D CHNS

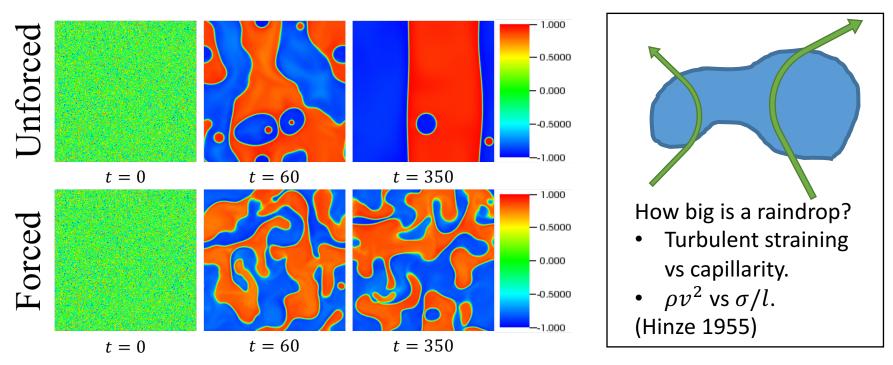
1. Energy

$$E = E^{K} + E^{B} = \int (\frac{v^{2}}{2} + \frac{\xi^{2}B_{\psi}^{2}}{2})d^{2}x$$

2. Mean Square Concentration $H^{\psi} = \int \psi^2 d^2 x$

3. Cross Helicity $H^{C} = \int \vec{v} \cdot \vec{B}_{\psi} d^{2}x$

Scales, Ranges, Trends

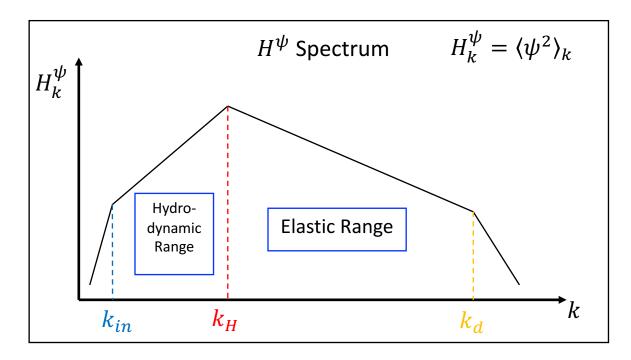


- Fluid forcing \rightarrow Fluid straining vs Blob coalescence
- Scale where turbulent straining ~ elastic restoring force (due surface tension): Hinze Scale

$$L_H \sim (\frac{\rho}{\xi})^{-1/3} \epsilon_{\Omega}^{-2/9}$$

Scales, Ranges, Trends

- Elastic range: $L_H < l < L_d$: where elastic effects matter.
- $L_H/L_d \sim (\frac{\rho}{\xi})^{-1/3} \nu^{-1/2} \epsilon_{\Omega}^{-1/18} \rightarrow$ Extent of the elastic range
- $L_H \gg L_d$ required for large elastic range \rightarrow case of interest

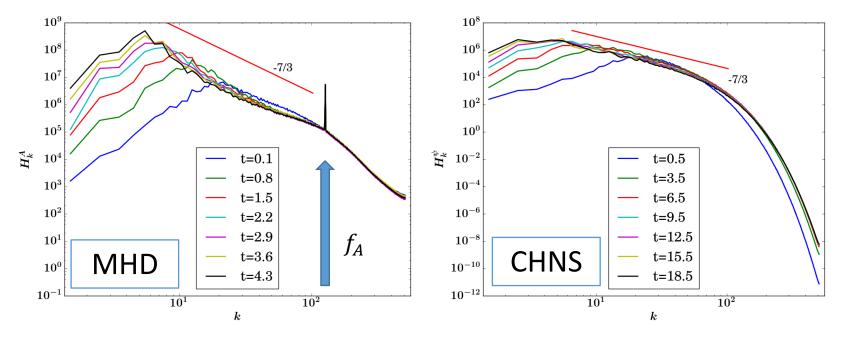


UC San Diego

Physics System	Conserved Quantity	Cascade Direction
2D MHD	E_k	Direct
2D MIND	H_k^A	Inverse
2D CHNS	E_k	Direct
2D CHN5	$H_k^{oldsymbol{\Psi}}$	Inverse

- By statistical mechanics studies (absolute equilibrium distributions) → dual cascade:
 - Inverse cascade of $\langle \psi^2
 angle$
 - *Forward* cascade of *E*
- Blob coalescence in the elastic range of CHNS \leftarrow \rightarrow flux coalescence in MHD.
- Inverse cascade of $\langle \psi^2 \rangle$ is formal expression of blob coalescence process \rightarrow generate larger scale structures till limited by straining
- Forward cascade of *E* as usual, as elastic force breaks enstrophy conservation

Power Laws



- Both systems exhibit $k^{-7/3}$ spectra.
- Inverse cascade of $\langle \psi^2 \rangle$ exhibits same power law scaling, so long as $L_H \gg L_d$, maintaining elastic range: Robust process.

22

UC San Diego

More Power Laws

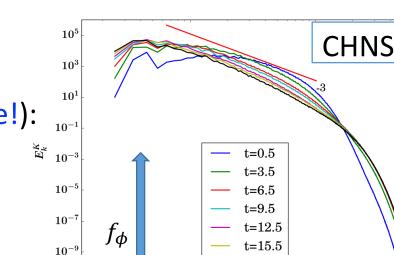
- Kinetic energy spectrum (Surprise!):
- 2D CHNS: $E_k^K \sim k^{-3}$;
- 2D MHD: $E_k^K \sim k^{-3/2}$.
- The -3 power law:
 - Closer to enstrophy cascade range scaling, in 2D Hydro turbulence.

 10^{-11}

- Remarkable departure from expected -3/2 for MHD. <u>Why?</u>
- Why does CHNS $\leftarrow \rightarrow$ MHD correspondence hold well for $\langle \psi^2 \rangle_k \sim \langle A^2 \rangle_k \sim k^{-7/3}$, yet break down drastically for energy?

Xiang Fan's Defense Talk

• *What physics* underpins this surprise?



 10^{1}

=18.5

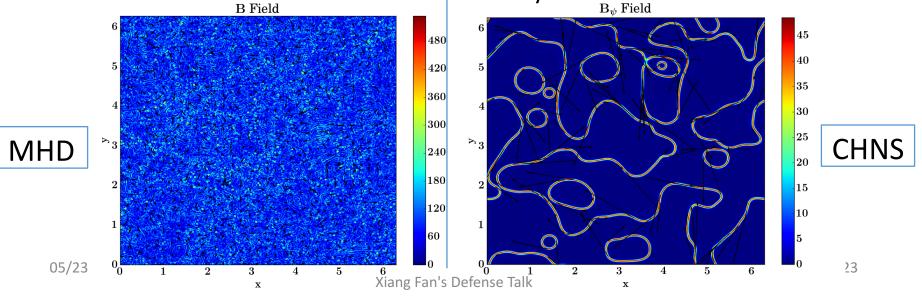
 10^{2}

Interface Packing Matters!

- Need to understand <u>differences</u>, as well as similarities, between CHNS and MHD problems.
 - In MHD:
 - Fields pervade system.

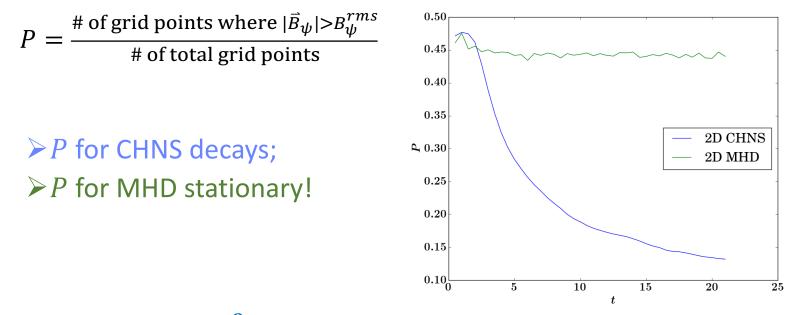
In CHNS:

- > Elastic back-reaction is limited to regions of density contrast i.e. $|\vec{B}_{\psi}| = |\nabla \psi| \neq 0$.
- As blobs coalesce, interfacial region diminished. 'Active region' of elasticity decays.



Interface Packing Matters!

• Define the *interface packing fraction P*:



- $\partial_t \omega + \vec{v} \cdot \nabla \omega = \frac{\xi^2}{\rho} \vec{B}_{\psi} \cdot \nabla \nabla^2 \psi + \nu \nabla^2 \omega$: small $P \rightarrow$ local back reaction is weak.
- Weak back reaction \rightarrow reduce to 2D hydro

Summary

- Avoid power law tunnel vision!
- <u>**Real space</u>** realization of the flow is necessary to understand key dynamics. Track interfaces and packing fraction *P*.</u>
- One player in dual cascade (i.e. $\langle \psi^2 \rangle$) can modify or constrain the dynamics of the other (i.e. *E*).
- Against conventional wisdom, $\langle \psi^2 \rangle$ inverse cascade due to blob coalescence is the robust nonlinear transfer process in CHNS turbulence.

Outline

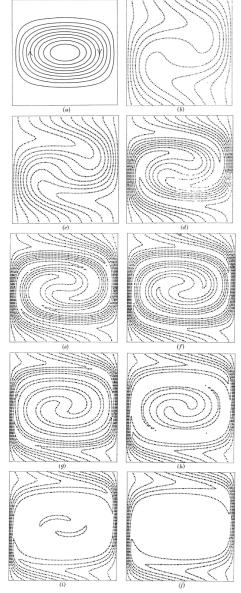
- Introduction
- Cascades and Spectra in 2D CHNS
- Single Eddy Mixing in 2D Cahn-Hilliard Flow
 - X. Fan, P. H. Diamond, and L. Chacón, Phys. Rev. E **96**, 041101(R) (2017).
- Turbulent Transport in 2D MHD
- Conclusions and Future Works

Single Eddy Mixing in 2D MHD: Expulsion

- When a convection eddy is imposed in a weak magnetic field, the magnetic field is expelled and amplified outside the eddy.
- This is called flux expulsion.
- The equation (kinematic, i.e. back reaction is ignored):

 $\partial_t A + \vec{\nu} \cdot \nabla A = \eta \nabla^2 A$

Also relevant to PV homogenization
 → Zonal Flow



Single Eddy Mixing in 2D MHD: Expulsion

- Main results of Weiss 1966 on Expulsion:
 - The final value of $\langle B^2 \rangle$ can be estimated by $\langle B^2 \rangle \sim Rm^{1/2}B_0^2$
 - The time for <B²> to reach a steady state is $\tau \sim Rm^{1/3}\tau_0$
- Main results of Rhines and

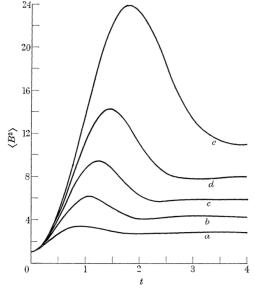


FIGURE 5. Magnetic energy as a function of time. Curves labelled a, b, c, d, e have $R_m = 40, 100, 200, 400, 1000$ respectively.

Weiss 1966

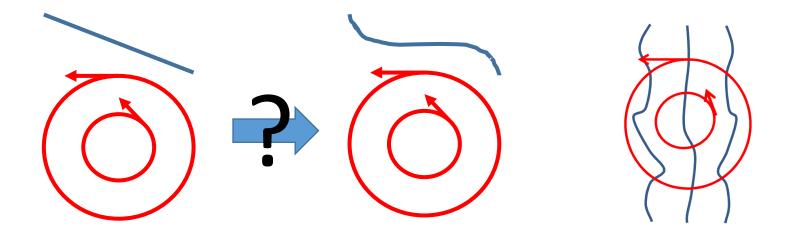
 $Pe \leftarrow \rightarrow Rm$

Young 1983 on PV Homogenization:

- Two stages: rapid and slow
- Rapid stage: dominated by shear-augmented diffusion, with time scale $\tau_{mix} \sim Pe^{1/3}\tau_0$
- Slow stage: usual diffusion, with time scale $\tau_{slow} \sim Pe \tau_0$

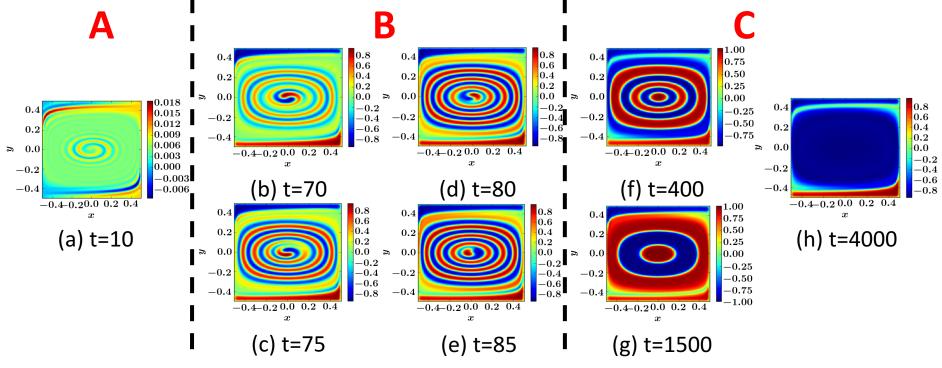
Single Eddy Mixing

- Structures are the key \rightarrow need understand how a <u>single eddy</u> interacts with ψ field
- Mixing of $\nabla \psi$ by a single eddy \rightarrow characteristic time scales?
- Evolution of structure?



Single Eddy Mixing

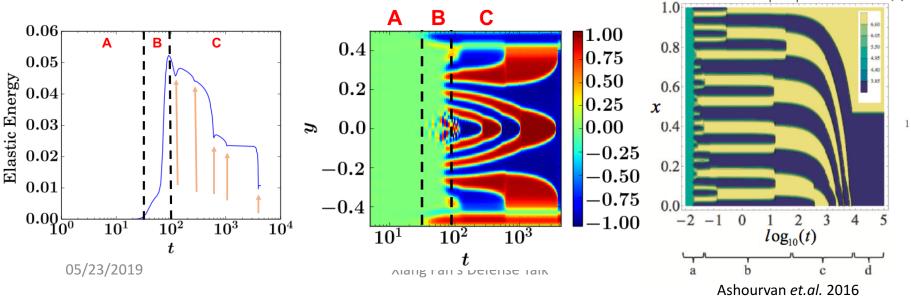
- 3 stages: (A) the *"jelly roll"* stage, (B) the *topological* evolution stage, and (C) the *target pattern* stage.
- Metastable target patterns formed and merge.
- ψ ultimately homogenized in the end.



(a)

Single Eddy Mixing

- The 3 stages are reflected in the elastic energy plot.
- The target bands mergers are related to the dips in the target pattern stage.
- The bands merge on a time scale long relative to eddy turnover time.
- The band merger process is similar to the step merger in drift-ZF staircases. $|\nabla n|$



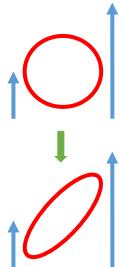
UC San Diego

Time Scales

- Analogous to the $Rm^{1/3}$ or $Pe^{1/3}$ time scale in MHD or PV homogenization, the mixing time scale of the shear + dissipation hybrid case is $\tau_{mix} \sim Pe^{1/5}Ch^{-2/5}t_0$.
- Brief derivation:
 - CH equation $\rightarrow \langle \delta r^4 \rangle \sim D\xi^2 t$
 - Relate δr and δy according to shear s:

$$\frac{d}{dt}\delta y \sim s\delta r$$

- So $\langle \delta y^4 \rangle \sim s^4 D \xi^2 t^5$.
- Note that $Pe \sim L_y v/D$
- So $\tau_{mix} \sim Pe^{1/5}Ch^{-2/5}t_0$

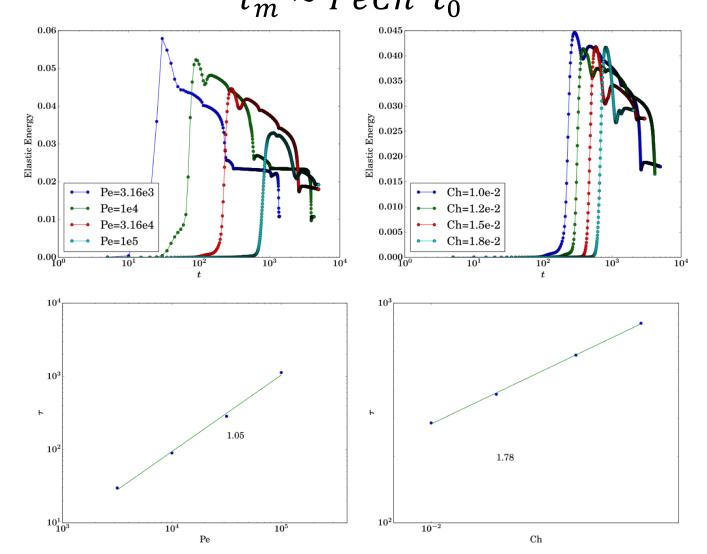


33

Time Scales

5/22/19

• Time to reach the maximum elastic energy: $\tau_m \sim PeCh^2t_0$



Summary

- Even kinematic single eddy mixing can exhibit unexpected nontrivial dynamics.
- 3 stages: (A) the *"jelly roll"* stage, (B) the *topological* evolution stage, and (C) the *target pattern* stage.
- Band merger process occurs on a time scale exponentially long relative to the eddy turnover time.
- Band merger process resembles step merger in drift-ZF staircases.
- Multi time-scale process: the $Pe^{1/5}$ and the Pe^1 time scales.

Outline

- Introduction
- Cascades and Spectra in 2D CHNS
- Single Eddy Mixing in 2D Cahn-Hilliard Flow
- Turbulent Transport in 2D MHD
 - X. Fan, P. H. Diamond, and L. Chacón, Phys. Rev. E **99**, 041201(R) (2019).
- Conclusions and Future Works

Introduction

- 2D MHD/reduced MHD: fundamental system in plasma physics.
- Turbulent transport: important in fusion studies.
- Kinematic expectation (passive scalar): $\eta_K \sim ul$
- Actual result: turbulent transport is suppressed $\eta_T < \eta_K$
- Conventional wisdom: mean field theory.
- New observation: mean field not applicable in some cases, with greater Rm.

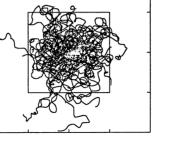
Conventional Wisdom (1)

- [Cattaneo and Vainshtein 1991]: turbulent transport is suppressed even when a weak large scale magnetic field is present.
- Starting point: $\partial_t \langle A^2 \rangle = -2\eta \langle B^2 \rangle$
- Assumptions:

05/23/2019

- Energy equipartition: $\frac{1}{\mu_0 \rho} \langle B^2 \rangle \sim \langle v^2 \rangle$
- Average B can be estimated by: $|\langle \mathbf{B} \rangle| \sim \sqrt{\langle A^2 \rangle} / L_0$
- Define Mach number as: $M^2 \equiv \langle v^2 \rangle / v_A^2 = \langle v^2 \rangle / (\frac{1}{\mu_0 \rho} \langle \mathbf{B} \rangle^2)$
- Result for suppression stage: $\eta_T \sim \eta M^2$
- Combine with kinematic stage result: $\eta_T \sim \frac{ul}{1 + \text{Rm}/M^2}$
- Lack physics interpretation of the origin of η_T .

Xiang Fan's Defense Talk



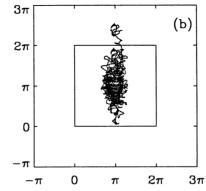
 3π

 2π

0

UC San Diego

(a)



Conventional Wisdom (2)

- [Gruzinov and Diamond 1994, 1996] and [Diamond, Hughes, and Kim 2005] derived η_T from dynamics.
- With an external imposed B_0 (i.e. $\frac{\partial \langle A \rangle}{\partial x}$).
- The key of this approach is to calculate the flux $\Gamma_A \equiv \langle v_x A \rangle$
- Standard closure methods yield:

$$\begin{split} \Gamma_{A} &= \sum_{\mathbf{k}} [v_{x}(-\mathbf{k})\delta A(\mathbf{k}) - B_{x}(-\mathbf{k})\delta\phi(\mathbf{k})] \\ &= -\sum_{\mathbf{k}} [\tau_{c}^{\phi}(\mathbf{k})\langle v^{2}\rangle_{\mathbf{k}} - \frac{1}{\mu_{0}\rho}\tau_{c}^{A}(\mathbf{k})\langle B^{2}\rangle_{\mathbf{k}}]\frac{\partial\langle A\rangle}{\partial x} \\ &= -\sum_{\mathbf{k}} \tau_{c}[\langle v^{2}\rangle_{\mathbf{k}} - \frac{1}{\mu_{0}\rho}\langle B^{2}\rangle_{\mathbf{k}}]\frac{\partial\langle A\rangle}{\partial x} \end{split}$$

• Therefore: $\Gamma_{A} &= -\eta_{T}\frac{\partial\langle A\rangle}{\partial x}$ with $\eta_{T} = \sum_{\mathbf{k}} \tau_{c}[\langle v^{2}\rangle_{\mathbf{k}} - \frac{1}{\mu_{0}\rho}\langle B^{2}\rangle_{\mathbf{k}}]$

Conventional Wisdom (2) Cont'd

• Then calculate $\langle B^2 \rangle$ in terms of $\langle v^2 \rangle$. From:

$$\partial_t A + \mathbf{v} \cdot \nabla A = -v_x \frac{\partial \langle A \rangle}{\partial x} + \eta \nabla^2 A$$

• Multiplying by A and sum over all modes:

$$\frac{1}{2}[\partial_t \langle A^2 \rangle + \langle \nabla \cdot \langle \mathbf{v} A^2 \rangle \rangle] = -\Gamma_A \frac{\partial \langle A \rangle}{\partial x} - \eta \langle B^2 \rangle$$

Dropped stationary case Dropped periodic boundary

• Therefore: $\langle B$

$$\langle B^2
angle = -rac{\Gamma_A}{\eta} rac{\partial \langle A
angle}{\partial x} = rac{\eta_T}{\eta} B_0^2$$

- Define Mach number as: $M^2 \equiv \langle v^2 \rangle / v_{A0}^2 = \langle v^2 \rangle / (\frac{1}{\mu_0 \rho} B_0^2)$
- $\eta_T = \frac{\sum_{\mathbf{k}} \tau_c \langle v^2 \rangle_{\mathbf{k}}}{1 + \mathrm{Rm}/M^2} = \frac{ul}{1 + \mathrm{Rm}/M^2}$ • Result:
- This theory is not able to describe the system with no B_0 , though can be extended.

Simulation Setup

• PIXIE2D: a DNS code solving 2D MHD equations in real space:

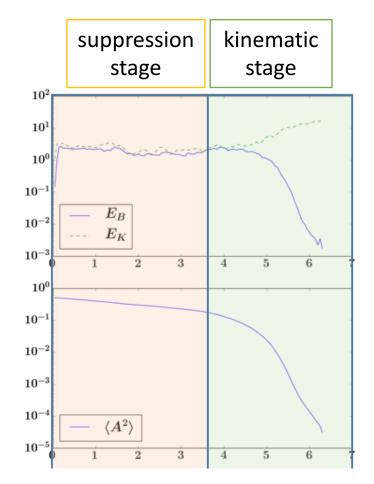
$$\partial_t A + \mathbf{v} \cdot \nabla A = \eta \nabla^2 A$$
$$\partial_t \omega + \mathbf{v} \cdot \nabla \omega = \frac{1}{\mu_0 \rho} \mathbf{B} \cdot \nabla \nabla^2 A + \nu \nabla^2 \omega + f$$

- 1024^2 resolution.
- External forcing f is isotropic homogeneous.
- Periodic boundary condition.
- Initial conditions:
 - (1) bimodal: $A_I(x, y) = A_0 \cos 2\pi x$
 - (2) unimodal: $A_I(x,y) = A_0 * \begin{cases} -(x-0.25)^3 & 0 \le x \le 1/2 \\ (x-0.75)^3 & 1/2 \le x \le 1 \end{cases}$

UC San Diego

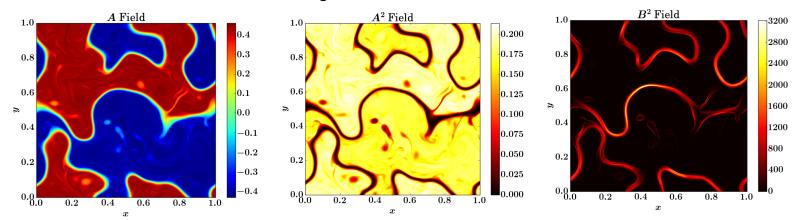
Two Stages

- 1. The suppression stage: the large scale magnetic field is sufficiently strong so that the diffusion is suppressed.
- 2. The kinematic decay stage: the magnetic field is dissipated enough so that the diffusion rate is back to the kinetic rate.
- The suppression is due to the memory provided by the magnetic field.

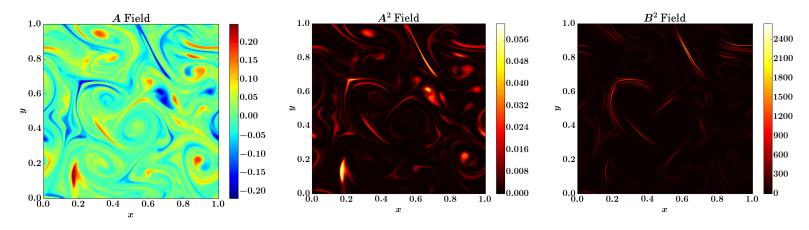


New Observations

• With no imposed B_0 , in suppression stage:



• v.s. same run, in kinematic stage (trivial):



New Observations Cont'd

- Nontrivial structure formed in real space in the suppression stage.
- A field is evidently composed of "blobs".
- The low A^2 regions have a clear 1-dimensional shape.
- The high B^2 regions are strongly correlated with low A^2 regions, and also have a 1-dimensional shape.
- We call these 1-dimensional high B^2 regions ``barriers'', because these are the regions where transport is reduced, relative to η_K .

Evolution of PDF of A

 10^{6}

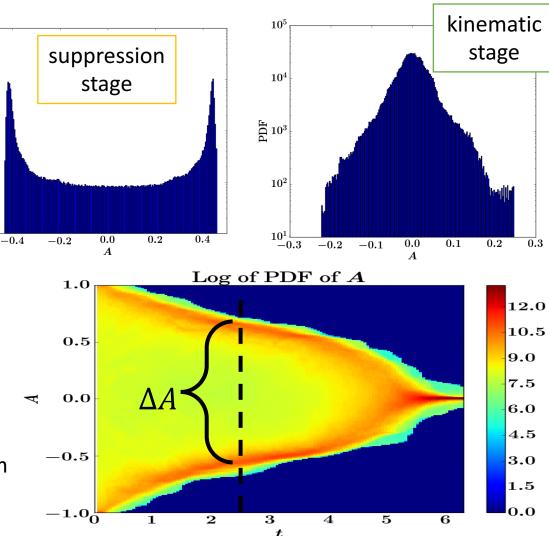
 10^{5}

 10^3

 10^{2}

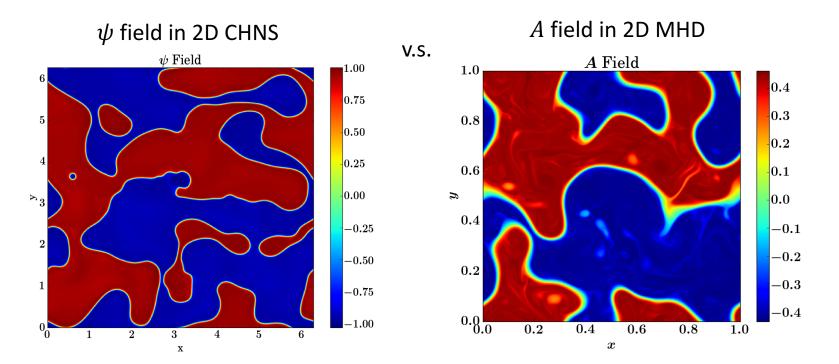
 Probability Density Function (PDF) ${}^{
m HO}_{
m Od}$ 10⁴ in two stage:

- Time evolution: horizontal "Y".
- The PDF changes from double ٠ peak to single peak as the system changes from the suppression stage to the kinematic stage.



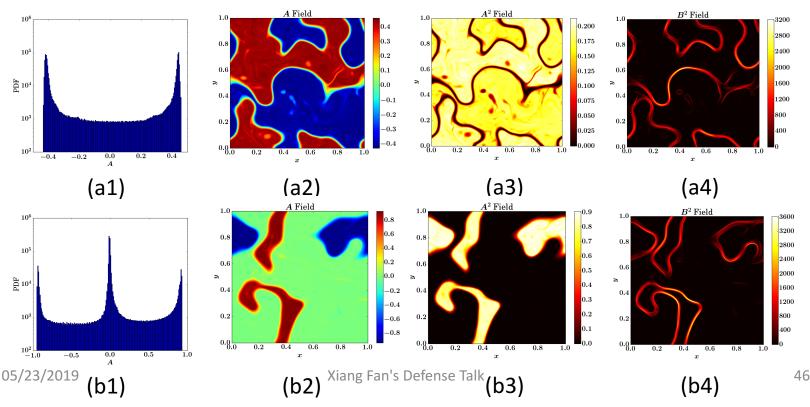
2D CHNS and 2D MHD

• The A field in 2D MHD in suppression stage is strikingly similar to the ψ field in 2D CHNS (Cahn-Hilliard Navier-Stokes) system:

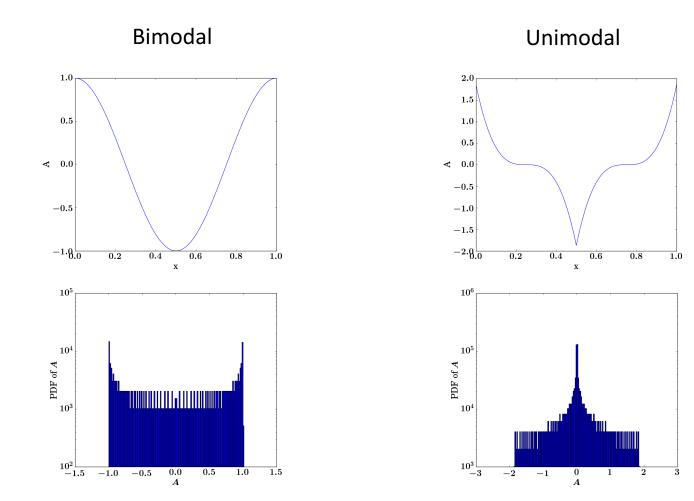


Unimodal Initial Condition

- One may question whether the bimodal PDF feature is purely due to the initial condition. The answer is no.
- Two peaks away from 0 on PDF of A still rise, even if the initial condition is unimodal.

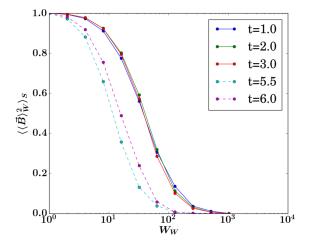


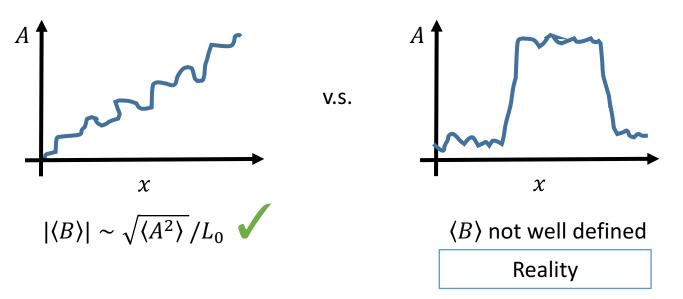
Unimodal Initial Condition



The problem of the mean field $\langle B \rangle$

- (B) depends on the averaging window.
- With no imposed external field,
 B is highly intermittent, therefore the (B) is not well defined.





New Understanding

- From $\partial_t \langle A^2 \rangle = -\langle \mathbf{v}A \rangle \cdot \nabla \langle A \rangle \nabla \cdot \langle \mathbf{v}A^2 \rangle \eta \langle B^2 \rangle$
- Do not drop 2nd term on RHS. Average taken over an envelope.
- Define diffusion coefficients (closure):

$$\langle \mathbf{v}A \rangle = -\eta_{T1} \nabla \langle A \rangle$$
$$\langle \mathbf{v}A^2 \rangle = -\eta_{T2} \nabla \langle A^2 \rangle$$

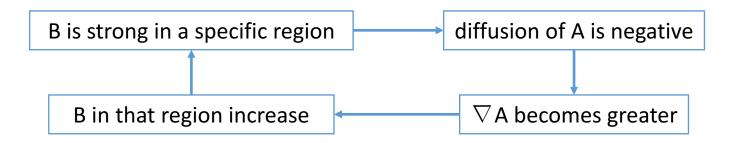
- Plugging in: $\partial_t \langle A^2 \rangle = \eta_{T1} (\nabla \langle A \rangle)^2 + \nabla \eta_{T2} \cdot \nabla \langle A^2 \rangle \eta \langle B^2 \rangle$
- For simplicity: $\langle B^2 \rangle \sim \frac{\eta_T}{\eta} (\langle B \rangle^2 + \langle A^2 \rangle / L_{env}^2)$
- where L_{env} is the envelope size. Scale of $\nabla^2 \langle A^2 \rangle$.
- Define new strength parameter: $M'^2 \equiv \langle v^2 \rangle / (\frac{1}{\mu_0 \rho} \langle A^2 \rangle / L_{env}^2)$
- **Result:** $\eta_T = \frac{ul}{1 + \text{Rm}/M^2 + \text{Rm}/M'^2} = \frac{ul}{1 + \text{Rm}\frac{1}{\mu_0\rho}\langle \mathbf{B} \rangle^2 / \langle v^2 \rangle + \text{Rm}\frac{1}{\mu_0\rho}\langle A^2 \rangle / L_{env}^2 \langle v^2 \rangle}$ $(5/23/2019) \qquad \text{Xiang Fan's Defense Talk} \qquad 49$

New Understanding Cont'd

- Quench is not uniform. Transport coefficient is different in different regions.
- In the regions where magnetic fields are strong, Rm/M^2 is dominant. They are regions of <u>barriers</u>.
- In other regions, i.e. inside blobs, Rm/M'^2 is what remains.
- Summary of important length scales: $l < L_{stir} < L_{env} < L_0$
 - System size *L*₀
 - Envelope size *L*_{env}
 - Stirring length scale L_{stir}
 - Turbulence length scale l, here we use Taylor microscale λ
 - Barrier width W

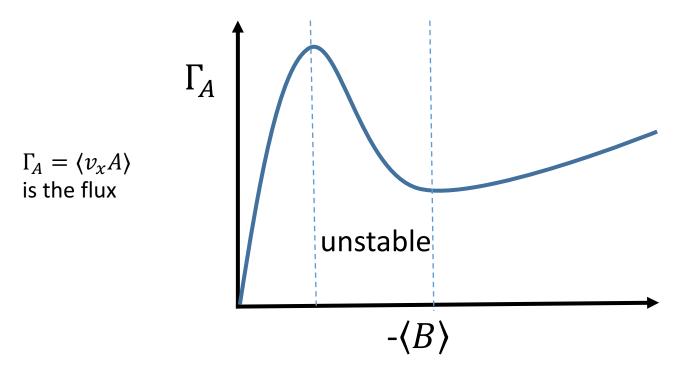
Formation of Barriers

- How do the barriers form? $\eta_T = \sum_{\mathbf{k}} \tau_c [\langle v^2 \rangle_{\mathbf{k}} - \frac{1}{\mu_0 \rho} \langle B^2 \rangle_{\mathbf{k}}]$ flux coalescence
- From above expression, it is possible for some strong B regions to have negative resistivity, while the resistivity is always positive when averaged over the whole system.
- Positive feedback:



Formation of Barriers Cont'd

- Negative resistivity leads to barrier formation.
- The S-curve is due to the dependence of B on Γ_A .
- When slope is negative, it is negative resistivity.

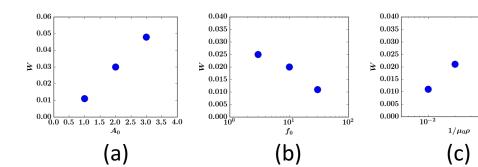


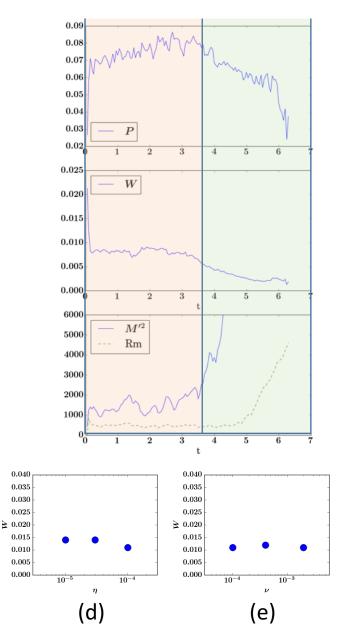
UC San Diego

Describing the Barriers

• Time evolution of *P* and *W*:

- What determines W:
 - A_0 or $1/\mu_0 \rho$ greater, W greater;
 - f_0 greater, W smaller;
 - W not sensitive to η or ν .

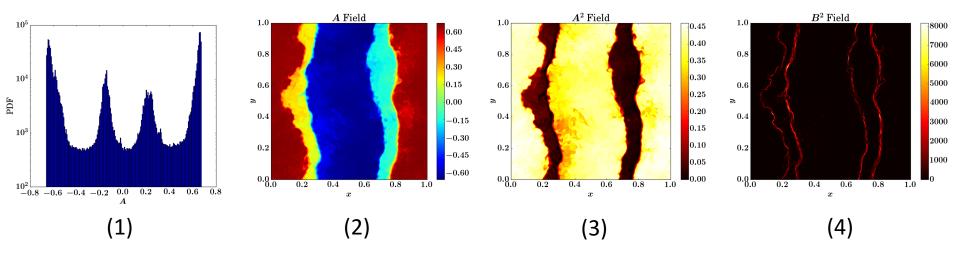




 10^{-1}

Staircase

- Staircases emerge spontaneously!
- Initial condition is the usual cos function (bimodal)
- The only major different parameter from runs above is the forcing scale is k=32 (for all runs above k=5).
- Resembles the staircase studies in fusion research.



Summary

- Magnetic fields suppress turbulent diffusion in 2D MHD by: formation of intermittent transport barriers.
- Barriers thin, 1D strong field Blobs 2D, weak field • Magnetic structures:
- Quench not uniform:

$$\eta_T = \frac{u}{1 + \operatorname{Rm}\frac{1}{\mu_0\rho} \langle \mathbf{B} \rangle^2 / \langle v^2 \rangle + \operatorname{Rm}\frac{1}{\mu_0\rho} \langle A^2 \rangle / L_{env}^2 \langle v^2 \rangle}$$

barriers, strong B blobs, weak B, $\nabla^2 \langle A^2 \rangle$ remains

a.1

Barriers form due to negative resistivity:

barriers, strong B

 Formation of "magnetic staircases" observed for some İ.C.

Outline

- Introduction
- Cascades and Spectra in 2D CHNS
- Single Eddy Mixing in 2D Cahn-Hilliard Flow
- Turbulent Transport in 2D MHD
- Conclusions and Future Works

General Conclusions

- Dual (or multiple) cascades can interact with each other, and one can modify another.
- We also show how a length scale, e.g. the Hinze scale in 2D CHNS, emerges from the balance of kinetic energy and elastic energy in blobby turbulence.
- We learn how negative diffusion (flux/blob coalescence) can lead to novel real space structure in a simple system, for example the target pattern.
- Turbulent resistivity can be negative (though for a short time) in a simple system such as 2D MHD. This results in the formation of nontrivial real space structure.
- More generally, we see that studying analogous but different systems can improve our understanding of all of them.

Future Works

- Extension of the transport study in MHD:
 - Numerical verification of the new η_T expression
 - What determines the barrier width and packing fraction
 - Why does layering appear when the forcing scale is small
 - What determines the step width, in the case of layering
 - The transport study may also be extended to 3D MHD ((A · B) important instead of (A²)). Do barriers regulate magnetic helicity transport in 3D? Implications for α quenching?
- Turbulent transport in CHNS
- Other similar systems can also be studied in this spirit. E.g. Oldroyd-B model for polymer solutions.

Thank you!