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Abstract

We show that shear is not the exclusive parameter that represents all aspects of flow structure

effects on turbulence. Rather, wave–flow resonance enters turbulence regulation, both linearly and

nonlinearly. Resonance suppresses the linear instability by wave absorption. Flow shear can weaken

the resonance, and thus destabilize drift waves, in contrast to the near-universal conventional

shear suppression paradigm. Furthermore, consideration of wave–flow resonance resolves the long-

standing problem of how zonal flows (ZF) saturate in the limit of weak or zero frictional drag, and

also determines the ZF scale. We show that resonant vorticity mixing, which conserves potential

enstrophy, enables ZF saturation in the absence of drag, and so is effective at regulating the Dimits

up-shift regime. Vorticity mixing is incorporated as a nonlinear, self-regulation effect in an extended

0D predator–prey model of drift–ZF turbulence. This analysis determines the saturated ZF shear

and shows that the mesoscopic ZF width scales as LZF ∼ f3/16(1− f)1/8ρ
5/8
s l

3/8
0 in the (relevant)

adiabatic limit (i.e., τckk
2
∥D∥ ≫ 1). f is the fraction of turbulence energy coupled to ZF and

l0 is the base state mixing length, absent ZF shears. We calculate and compare the stationary

flow and turbulence level in frictionless, weakly frictional, and strongly frictional regimes. In

the frictionless limit, the results differ significantly from conventionally quoted scalings derived for

frictional regimes. To leading order, the flow is independent of turbulence intensity. The turbulence

level scales as E ∼ (γL/εc)
2, which indicates the extent of the “near-marginal” regime to be γL < εc,

for the case of avalanche-induced profile variability. Here, εc is the rate of dissipation of potential

enstrophy and γL is the characteristic linear growth rate of fluctuations. The implications for

dynamics near marginality of the strong scaling of saturated E with γL are discussed.
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I. INTRODUCTION

Zonal flows (ZF) are very effective at regulating drift wave (DW) turbulence, as they are

the secondary modes of minimal inertia, transport, and damping[1, 2]. Such a mechanism

naturally can be thought of as an element in a ‘predator–prey’ type ecology[3, 4], in which

the secondary ‘predator’ feeds off (i.e., extracts energy from) of the primary ‘prey’. In

such a system, the damping of the predator (here, the ZF) ultimately regulates the full

system. Frictional drag, due to collisions, is usually invoked to damp ZF. However, this

picture is unsatisfactory for present day and future regimes of low collisionality. Thus, it

becomes essential to understand frictionless ZF saturation and its implications for drift wave

turbulence. Of course, ZF saturation significantly impacts transport and turbulence scalings.

Note that understanding scalings in the frictionless regime is essential for developing reduced

models thereof. As zonal flow shear reduces the turbulent mixing scale, the saturated zonal

flow is coupled to the scaling of turbulent diffusivity with ρ∗ ≡ ρs/Ln. This is related to the

degree of gyro-Bohm breaking[5], i.e. the exponent α in D ∼ DBρ
α
∗ , where DB ≡ kBT/16eB

is Bohm diffusivity and α < 1 indicates gyro-Bohm breaking.

Related to zonal flow saturation, we note that strong resonance between drift waves and

azimuthal (i.e., zonal) flow is observed in a linear device CSDX (Controlled Shear Decor-

relation eXperiment), i.e. ωk − kθ⟨vθ⟩ ≪ ω∗e, with ω∗e being the electron drift frequency.

CSDX is a well-diagnosed venue to study the interaction between turbulence and turbulence

driven flows in straight magnetic fields[6, 7]. Though resonance is manifested most clearly

in the linear device, it has more general implications for confinement devices.

Wave-flow resonance enters turbulence regulation by zonal flows both linearly and non-

linearly. Resonance alters our understanding of the shear suppression mechanisms. To this

end, the effects of E ×B shear flows on turbulence have been intensively studied. However,

simplified shear suppression models are not universally applicable. In some limits, weak flow

shear can even destabilize turbulence due to the coupling of radial eigenmodes[8]. Moreover,

flow shearing alone is not the only parameter that characterizes all effects of flow struc-

ture on turbulence[9]. For example, wave-flow resonance stabilizes turbulence through wave

absorption[8, 10]. Yet, resonance is often overlooked by many existing shear suppression

models.

Resonance also suggests saturation mechanisms for zonal flows. Many works on zonal flow
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generation[1, 2, 11, 12] exist, but the question of how zonal flows saturate, absent frictional

drag, remains open. Though sometimes mentioned in this context, tertiary instability is

not effective for most cases of ZF saturation as it is strongly suppressed by magnetic shear.

Indeed, in simulation studies, onset of tertiary instability requires an artificial increase in

the ZF shearing rate[13] so as to overcome the stabilizing effects of magnetic shear. Ion

temperature gradients can provide an extra source of free energy to drive the tertiary mode,

in addition to flow shear. However, such a contribution to the growth rate of the tertiary

mode is of order O(k2ρ2i ), and thus does not qualitatively alter tertiary stability[14]. Tertiary

instability of ZF may occur in flat-q regimes[15] with zero magnetic shear. Even there, the

key question of just how much turbulent mixing and flow damping result remains to be

addressed.

In this work, we discuss the role of wave–flow resonance in zonal flow dynamics. Specif-

ically, we investigate whether the conventional shear suppression rules still hold true when

wave–flow resonance is considered. In addition, we study how resonance enters zonal flow

regulation. In particular, we seek to answer the following questions:

(1) How do zonal flows saturate in the frictionless regime? What determines the stationary

flow scale? To what degree is the often-quoted gyro-Bohm scaling broken?

(2) How do we incorporate the resonance effect in a predator–prey model? How is this

new model different from previous ones?

We find that flow shear can destabilize the drift wave turbulence through the resonance.

This contradicts the conventional wisdom that the flow shear always suppresses turbulence.

Resonance between drift wave and plasma flow suppresses the instability by wave absorp-

tion. Increasing the flow shear, with fixed flow magnitude, can weaken the resonance.

Consequentially, the flow shear increment actually destabilizes the drift wave turbulence.

This suggests that the flow shear can affect the stability via resonance in a way opposite

to what the conventional shear suppression models predict. Thus, wave-flow resonance is

an important factor to be considered when studying shear flow effects on stability, and on

quasilinear fluxes that transport particles, vorticity, and momentum.

We study drift–ZF turbulence with special focus on the frictionless regime where the

flow drag → 0. Note that the DW drive–which can depend on electron collisionality–is not

affected by the distinction between frictional and frictionless ion regimes, since frictional
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FIG. 1: Frictionless zonal flow saturation by (a) tertiary instability and (b) resonant vorticity

diffusion.

damping of drift waves is weak. Many works on ZF generation[1, 2] exist, but the question

of how ZF saturates, absent frictional drag, remains open. We show that turbulent mixing

of zonal vorticity by drift waves in the presence of ZF saturates secondary flows for near-

marginal turbulence (with low to zero frictional drag), and thus is effective at regulating the

Dimits up-shift regime. The Dimits regime[1, 16] is that of a frictionless DW–ZF system

close to the linear instability threshold, where nearly all the energy of the system is coupled

to ZF, so that the residual transport and turbulence are weak, though finite. This induces

an up-shift in the onset of the turbulent fluxes when plotted vs ∇T . Turbulent vorticity

mixing is fundamentally different from viscous flow damping. Turbulent vorticity mixing

conserves total potential enstrophy (PE) between the mean field–i.e., the zonal component–

and fluctuations. In contrast, the flow viscosity dissipates both the ZF and (DW flow)

fluctuations, and so is an energy sink for all. Fig. 1 illustrates the paradigm shift from the

hypothetical saturation induced by tertiary instability to the saturation by vorticity mixing.

The ZF saturation mechanism induced by resonant vorticity mixing is incorporated as

a nonlinear self-regulating effect in an extended predator-prey model[3, 4]. Stationary tur-

bulence and flow states are calculated and compared in the frictionless, weakly frictional,

and strongly frictional regimes. In the frictionless regime, the results are different from the

conventionally quoted scalings derived for frictional regimes.

Turbulent vorticity mixing is driven by resonance between drift wave and zonal flow.

It is analogous to Landau damping absorption of plasmons during collapse of Langmuir

turbulence[17, 18]. In the latter case, plasmon Landau damping arrests collapse, leaving an

“empty cavity”, without its “filling” of Langmuir wave pressure. Table I compares these

two processes. Both zonal flow formation and Langmuir collapse (i.e., the formation of

caviton) result from modulational instability, and they both saturate in the collisionless

regime. Moreover, both Landau damping and vorticity mixing conserve energy (or potential
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FIG. 2: Comparison of the generation and frictionless dissipation of (a) zonal flow and (b) caviton.

FIG. 3: Overlapping islands in phase space. The dashed lines represent resonant surfaces.

enstrophy, in the case of vorticity mixing). The key difference between the two is the

detail of the resonance. The resonance considered here is between drift wave phase velocity

and flow velocity, while conventional Landau resonance considers the resonance between

phase velocity and particle velocity. Landau resonance defines a series of resonant surfaces

in (x, v) phase space. When the islands around adjacent surfaces overlap, the trajectory

of a particle becomes chaotic, leading to mixing of phase space density (Fig. 3). As a

result, the particle PDF (probability density function) evolves stochastically, i.e., as by a

Fokker–Planck equation in velocity. In contrast, resonant diffusion mixes vorticity in real

space. The diffusive scattering of zonal vorticity profile is resonant. Therefore, irreversibility

results from stochastic vorticity trajectories due to overlapping islands in real space, i.e., the

(x, y) space.

The rest of this paper is organized as follows. Sec. II presents the wave-flow resonance

effect on stability, specifically how the flow magnitude and flow shear affect the stability via

resonance. Sec. III discusses how zonal flow saturation in the frictionless regime is regulated
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TABLE I: Comparison and contrast of Landau damping effects on cavity collapse during Langmuir

turbulence collapse and resonance effects on frictionless zonal flow (ZF) saturation.

Langmuir turbulence collapse Frictionless ZF saturation

Primary player Plasmon-Langmuir wave Drift wave turbulence

Secondary player Ion-acoustic wave (caviton) Zonal flow

Free energy source Langmuir turbulence driver ∇n, ∇T drive

Final state Nearly empty cavity Saturated zonal flow and resid-
ual turbulence

Resonance Landau damping ωk − ky⟨vy⟩ absorption
Other damping effects Ion-acoustic radiation Wave packet trapping

by the resonance. Sec. IV summarizes and discusses the main results of this paper.

II. WAVE-FLOW RESONANCE EFFECT ON STABILITY

Shear is not the only flow property that controls the stability of turbulence. We reconsider

the shear suppression models by incorporating the the effects of resonance. Resonance

between drift wave and flow stabilizes the turbulence via wave absorption. The flow shear

weakens the resonance, and thus actually enhances the turbulence. Also, we show that

the flow magnitude enhances the resonance, and thus, stabilizes the drift wave. The flow

magnitude (Vmax) is defined as the maximum flow velocity in the electron drift direction.

Increasing Vmax reduces the value of ωk − kVmax, and thus enhances the resonance.

We study the Hasegawa–Wakatani drift wave system in slab geometry with a mean per-

pendicular flow ⟨vy⟩ varying in the x̂ direction:(
d

dt
+ ṽE · ∇

)
ñ+ ṽx

∇n0

n0

= D∥∇2
∥(ñ− ϕ̃) +Dc∇2ñ, (1)

(
d

dt
+ ṽE · ∇

)
ρ̃+ ṽx⟨ρ⟩′ = D∥∇2

∥(ñ− ϕ̃) + χc∇2ρ̃, (2)

where we define D∥ ≡ v2The/νei and d/dt ≡ ∂t + ⟨vy⟩∂y. νei is the frequency of electron–

ion collision and vThe is the electron thermal speed. We have normalized electric potential

fluctuation as ϕ̃ ≡ eδϕ/Te and density fluctuation as ñ ≡ δn/n0, where n0 is the equilibrium

density. The magnetic field is in the ẑ direction, and both n0 and ⟨vy⟩ vary only in x̂

direction. The vorticity fluctuation is ρ̃ ≡ ρscs∇2
⊥ϕ̃ where ρs is the ion Larmor radius at
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electron temperature and cs is the ion sound speed, and the zonal vorticity is ⟨ρ⟩ ≡ ⟨vy⟩′.

ṽE ≡ csẑ × ∇ϕ̃ is the E × B velocity fluctuation. Dc and χc are the collisional particle

diffusivity and vorticity diffusivity (i.e., viscosity). Drift wave is the dominant instability

population, because the vorticity gradient drive is quantitatively weaker than the ∇n0 drive,

i.e. kyρ
2
s⟨vy⟩′′/ω∗e ≪ 1 where ω∗e ≡ kyρscs/Ln is the electron drift frequency and Ln ≡

n0/|dn0/dx| is the density gradient scale.

In the following subsections, we show how conventional shear suppression models fail in

the presence of strong wave–flow resonance.

A. Resonance Effects on Stability

Wave-flow resonance stabilizes drift waves through wave absorption. The instability is

linked to the mode scale Lm (defined by Eq. (5)). The key resonance, here, is between

the phase velocity of drift waves and the fluid velocity of plasma, i.e. ωk − ky⟨vy⟩. Due

to the resonance effect, the eigenmode peaks around the position where |ωk − ky⟨vy⟩| is a

minimum. When the resonance becomes stronger, the scale of the eigenmode decreases. The

mode scale is effectively the wavelength in the x̂ direction, i.e. kxρs ∼ L−1
m ρs. Hence, the

resonance regulates the turbulent fluxes by varying the mode scale.

We can write the fluctuating quantities in Eq. (1)–(2) as Fourier components in the ŷ

and parallel (ẑ) directions, while retaining the amplitude variation in the x̂ direction, i.e.

ϕ̃(x, y, z, t) =
∑
ky ,k∥

ϕ(x)ei(kyy+k∥z−Ωkt),

ñ(x, y, z, t) =
∑
ky ,k∥

n(x)ei(kyy+k∥z−Ωkt).

The complex frequency Ωk consists of a real frequency and a growth rate, i.e. Ωk = ωk+ iγk.

Electrons are weakly non-adiabatic, i.e. ñ = (1−iδ)ϕ̃ with δ ≪ 1. The nonadiabatic electron

response δ is determined by the frequency shift δ = (ω∗e − ωk + ky⟨vy⟩)/(k2
∥D∥) ≪ 1, given

that the adiabatic factor is k2
∥D∥/ω∗e ≫ 1. The eigenmode equation for ϕ(x) is then

(ωk − ky⟨vy⟩+ iγk) ρ
2
s∂

2
xϕ =

[(
1 + k2

yρ
2
s − iδ

)
(ωk − ky⟨vy⟩+ iγk)− ω∗e − kyρ

2
s⟨vy⟩′′

]
ϕ, (3)
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where the collisional viscosity χc has been neglected. Multiplying both sides of Eq.(3) by

ϕ∗, and integrating over the x̂ direction, we obtain

(ωk − ky⟨vy⟩+ iγk)L
−2
m ρ2s +

[(
1 + k2

yρ
2
s − iδ

)
(ωk − ky⟨vy⟩+ iγk)− ω∗e

]
= 0 (4)

where the mode scale Lm is defined by

L−2
m ρ2s ≡

ρ2s
∫ Lx

0
dx|∂xϕ|2∫ Lx

0
dx|ϕ|2

. (5)

Here, we have used the boundary condition ϕ(0) = ϕ(Lx) = 0. In addition, the vorticity

gradient term is ignored in Eq.(4), because it is quantitatively negligible as compared to ω∗e.

The Doppler shifted frequency and the growth rate are obtained from Eq. (4)

ωk
∼=

ω∗e

1 + k2
yρ

2
s + L−2

m ρ2s
, (6)

γk ∼=
ω2
∗e

k2
∥D∥

k2
yρ

2
s + L−2

m ρ2s
(1 + k2

yρ
2
s + L−2

m ρ2s)
3
. (7)

When resonance becomes stronger, i.e. |ωk − ky⟨vy⟩|min decreases, the eigenmode becomes

narrower (mode scale Lm/ρs decreases), and thus the growth rate decreases. Therefore,

stronger resonance stabilizes the drift wave.

B. Effect of Flow Magnitude on Stability

Increasing the flow magnitude enhances resonance, thus stabilizes the drift wave. We

consider the regime where 0 < |ωk − ky⟨vy⟩|min ≪ ω∗e. Here, the resonance is stronger, but

there is no singularity in the eigenmode equation. As ⟨vy⟩ increases, resonance is enhanced.

Therefore, increasing the flow magnitude suppresses instability.

In order to illustrate the effect of flow on the resonance, and thus on stability, we nu-

merically solve the eigenmode equation Eq. (3) for wave frequency ωk, growth rate γk, and

eigenmode profile ϕ(x). The chosen parameters are a proxy for realistic CSDX parameters,

which are Lx = 6 cm, ρs = 1.2 cm, Ln = 2 cm, kyρs = π/Lx. Dirichlet boundary conditions

are used, which are ϕ(0) = ϕ(Lx) = 0. The adiabatic factor is k2
∥D∥/ω∗e = 3, so electrons
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are nearly adiabatic with δ ∼= 1/3. We use the hyperbolic tangent function to describe the

flow profile, which is

⟨vy⟩ = Vmax tanh
x− 0.5Lx

LV

. (8)

Here, the maximum flow shear is given by Vmax/LV . This allows us to vary either the flow

magnitude or the flow shear, while keeping the other fixed.

As the flow magnitude increases and the flow shear remains constant, the resonance

becomes stronger (Fig. 6, left panel). Hence, the mode peak moves closer to the position

with the minimum |ωk − ky⟨vy⟩|, which is at x = Lx (Fig. 5). As a result, instability is

suppressed (Fig. 6, right panel).

C. Effect of Flow Shear on Stability

Flow shear weakly destabilizes the drift wave by weakening the resonance. As a result,

the eigenmode profile is flattened (Fig. 7). This increases the mode scale Lm/ρs (Fig. 8,

left panel). Hence, the drift wave is destabilized by the flow shear (Fig. 8, right panel).

Note that the increment in growth rate is not due to enhanced KH instability, because

KH drive is quantitatively negligible as compared to drift wave drive here.

III. FRICTIONLESS ZF SATURATION BY RESONANT PV MIXING

In this section, we show that resonant scattering of the zonal vorticity can saturate sec-

ondary flows in the frictionless regime. This process is distinct from the tertiary mechanism.

This shift in paradigm is illustrated by the diagram in Fig. 1. The resonant vorticity dif-

fusion can saturate flows in both marginal and strong turbulence regimes. The stationary

flow results from the balance between the residual vorticity flux and the resonant scattering

effect. Since both of them scale with the turbulence intensity, the stationary flow is then

independent of turbulence strength to leading order. Therefore, this saturation mechanism

is effective in the Dimits up-shift regime, where turbulence is marginally unstable. We cal-

culate the stationary zonal flow shear and scale directly from analysis, and determine the

degree of gyro-Bohm breaking resulting from strong zonal flow shear.

This saturation mechanism is incorporated into a extended 0D predator–prey model. The

flow state and turbulence level are calculated for frictionless, weakly frictional, and strongly
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frictional regimes, and compared to previous results. Also, we use drift wave turbulence

as an example case to calculate the saturated flow state in the frictionless regime. Study

for the 0D model lends considerable insight by enabling calculation of flow scales, and flow

and turbulence states (i.e., fixed points). However, a 1D model is necessary to study the

spatiotemporal evolution in physical systems, such as staircase formation and avalanches[19,

20].

A. Drift Wave–Zonal Flow System in the Resonant PV Mixing Framework

The generation and saturation of zonal flows by drift waves are described by PV (potential

vorticity) mixing. The fluctuating PV is defined as q̃ ≡ ñ − ρ̃, and the zonal PV is ⟨q⟩ ≡

⟨n⟩ − ⟨ρ⟩. Hence, the evolution equation for fluctuating PV can be obtained by subtracting

Eq. (2) from Eq. (1), yielding(
d

dt
+ ṽE · ∇

)
q̃ + ṽx

∂

∂x
⟨q⟩ = Dq,c∇2q̃. (9)

Here, Dq,c ∼ (Dc+χc)/2 is the collisional diffusivity of PV. In multiplying both sides of Eq.

(9) by q̃, we obtain the potential enstrophy (PE)–i.e., Ω ≡ ⟨q̃2⟩/2–equation[21, 22]:

∂

∂t
Ω = − ∂

∂x

⟨ṽxq̃2⟩
2

− ⟨ṽxq̃⟩
∂

∂x
⟨q⟩ − εcΩ

3/2 + γLΩ. (10)

The turbulent PE flux is due to nonlinear spreading, and can be approximated as a diffusive

flux, i.e., ⟨ṽxq̃2⟩/2 ∼ −DΩ∂xΩ[21]. The nonlinear PE dissipation εcΩ
3/2 represents the

forward cascade (to dissipation) of PE. γL is the characteristic linear growth rate of drift

waves, which drives the turbulence and thus produces PE. The coupling of PV flux and

zonal PV profile gradient conserves PE between mean field and fluctuations.

The equations for mean-field density and zonal vorticity are

∂

∂t
⟨n⟩ = − ∂

∂x
⟨ṽxñ⟩+Dc∇2⟨n⟩, (11)

∂

∂t
⟨ρ⟩ = − ∂

∂x
⟨ṽxρ̃⟩ − µc⟨ρ⟩ − µNL⟨ρ⟩+ χc∇2⟨ρ⟩. (12)

µc is frictional drag coefficient. The nonlinear flow damping rate µNL depends on ⟨ρ⟩, and is
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set by tertiary modes, e.g. Kelvin–Helmholtz instability of zonal flows. In reality, the onset

of such tertiary modes requires the ZF shear to exceed a threshold[13], in order to overcome

the damping of magnetic shear. Onset of tertiary instability can be included in reduced

models, if needed. However, here we neglect it, because the relevance of such tertiary modes

to ZF saturation in confinement devices is negligible.

To close the system, we need to calculate the turbulence-driven fluxes. The quasilinear

PV flux is diffusive, i.e.,

⟨ṽxq̃⟩ = −Dq,turb
∂

∂x
⟨q⟩, (13)

which is obtained from Eq. (9), neglecting collisional diffusion. Here, the turbulent diffusiv-

ity of PV has a resonant part and a non-resonant part, i.e., Dq,turb = Dres
q +Dnon-res

q .

The resonant diffusivity of PV is set by the resonance between phase velocity of drift

wave and the local ZF profile, which yields

Dres
q =

∑
k

|ṽx,k|2πδ(ωk − ky⟨vy⟩), (14)

where ṽx,k is the fluctuating velocity in the radial direction and ωk is the drift wave frequency.

The resonant scattering here has a characteristic spectral autocorrelation time scale τck ∼

|∆(ωk−ky⟨vy⟩)|−1 ∼ {|(vg,y − vph,y)∆ky|+ |vg,x∆kx|}−1, where we have used ⟨vy⟩ ∼= ωk/ky =

vph,y. The resonance is between drift waves and the instantaneous ZF profile. Thus, this

autocorrelation time is shorter than the time scale of ZF evolution, i.e., τck ≪ τZF , consistent

with ZF evolution by turbulent PV mixing. The correlation time τck is shorter as compared

to the 1D case, where the spectral width is associated with the mismatch between group

velocity and phase velocity, i.e., τck ∼ |(vg − vph)∆k|−1, only. As a result, the resonant

diffusivity is Dres
q =

∑
k k

2
yρ

2
sc

2
s|ϕk|2τck.

The non-resonant diffusivity can be obtained by quasilinear theory, and is

Dnon-res
q =

∑
ωk ̸=ky⟨vy⟩

k2
yρ

2
sc

2
s|ϕk|2

|γk|
|ωk − ky⟨vy⟩|2

. (15)

γk is the linear growth rate of drift waves. In marginally stable turbulence, γk should

be replaced by the nonlinear decorrelation rate of turbulence, i.e., ∆ωNk/N0 where Nk ∼

|ϕk|2/ωk is the wave action density. As a consequence, in marginally stable turbulence, the
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non-resonant diffusivity is

Dnon-res
q =

∑
ωk ̸=ky⟨vy⟩

k2
yρ

2
sc

2
s

|∆ω|
I0

|ϕk|2|ϕk|2

|ωk − ky⟨vy⟩|2
, (16)

where I0 ≡
∑

k |ϕk|2. This is analogous to wave–particle scattering due to higher order

Landau resonance[23] in Vlasov plasmas. The Doppler shifted frequency and the growth rate

of the drift wave are given by Eq. (6) and (7). Both of them depend upon the eigenmode

scale in radial direction, which is Lm ≡ ⟨k2
x⟩−1/2. Thus, the non-resonant diffusivity depends

on the mode scale, which yields

Dnon-res
q ∼

∑
ωk ̸=ky⟨vy⟩

k2
yρ

2
sc

2
s

k2
∥D∥

k2
yρ

2
s + L−2

m ρ2s
1 + k2

yρ
2
s + L−2

m ρ2s
|ϕk|2. (17)

The mode scale does not affect the turbulent diffusivity significantly. This follows since for

drift wave scaling where kyρs ∼ 1, the factor involving the mode scale does not vary strongly

(with that scale) while it ranges from 0.5 to 1. The non-resonant diffusivity is negligible

in comparison to the resonant diffusivity, because Dnon-res
q ∼ (k2

∥D∥)
−1 and k2

∥D∥ ≫ τ−1
ck for

near–adiabatic electrons. Therefore, the mixing of PV is primarily resonant.

The turbulent particle flux driven by drift wave turbulence in the adiabatic regime is

diffusive, i.e.,

⟨ṽxñ⟩ = −Dn,turb
∂

∂x
⟨n⟩, (18)

where

Dn,turb =
∑
k

k2
yρ

2
sc

2
s

k2
∥D∥

k2
yρ

2
s + L−2

m ρ2s
1 + k2

yρ
2
s + L−2

m ρ2s
|ϕk|2. (19)

We can then obtain the vorticity flux by subtracting the PV flux from the particle flux, i.e.,

⟨ṽxρ̃⟩ = ⟨ṽxñ⟩ − ⟨ṽxq̃⟩, which is

⟨ṽxρ̃⟩ = −(Dn,turb −Dres
q )

∂

∂x
⟨n⟩ −Dres

q

∂

∂x
⟨ρ⟩. (20)

Here, the last term is the flux induced by resonant diffusion. The non-diffusive component

forms a residual vorticity flux, i.e., ΓRes
ρ = −(Dn,turb−Dres

q )∂x⟨n⟩. ΓRes
ρ is driven by drift wave

turbulence, so it is proportional to the density gradient. As discussed in Ref. [1], ΓRes
ρ drives

zonal flows against diffusive vorticity mixing. The gradient of ΓRes
ρ can accelerate zonal flows
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from rest. Note that this mean field calculation of the vorticity flux is technically applicable

to the stationary state, while modulational instability analysis is limited to the stage of ZF

growth.

We then arrive at the DW–ZF system including resonant PV mixing, which is

∂

∂t
⟨n⟩ = ∂

∂x
Dn,turb

∂

∂x
⟨n⟩+Dc∇2⟨n⟩, (21)

∂

∂t
⟨ρ⟩ = ∂

∂x

[
(Dn,turb −Dres

q )
∂

∂x
⟨n⟩+Dres

q

∂

∂x
⟨ρ⟩
]
− µc⟨ρ⟩ − µNL⟨ρ⟩+ χc∇2⟨ρ⟩, (22)

∂

∂t
Ω = DΩ

∂2

∂x2
Ω +Dres

q

[
∂

∂x
(⟨n⟩ − ⟨ρ⟩)

]2
− εcΩ

3/2 + γLΩ. (23)

This system consists of the equations for mean-field density (Eq. (21)), zonal vorticity (Eq.

(22)), and fluctuation PE (Eq. (23)). Initially produced by linear drift wave instability, the

PE of this system is conserved up to frictional dissipation and nonlinear turbulent saturation,

which transfer PE to small scales. The evolution of total PE is given by

∂

∂t

∫
dx

[
Ω +

(⟨n⟩ − ⟨ρ⟩)2

2

]
=

∫
dx
[
γLΩ− εcΩ

3/2 −Dq,c|∇(⟨n⟩ − ⟨ρ⟩)|2 − µc⟨ρ⟩2 − µNL⟨ρ⟩2
]
.

(24)

The collisional diffusion of zonal PV (the term with Dq,c in Eq. (24)) is a sink. In contrast,

the turbulent PV diffusion conserves PE between mean field and fluctuations.

B. Frictionless ZF Saturation via Resonant PV Diffusion

As demonstrated by Ref. [24, 25], vorticity flux is identical to the Reynolds force, and thus

drives the zonal flow. The residual vorticity flux excites the zonal flow, and thus the resonant

diffusion is the only damping for zonal flows in the frictionless limit–i.e., µc, χc, µNL → 0.

By multiplying Eq. (22) by ⟨ρ⟩, we obtain the net production of mean flow enstrophy in the

frictionless limit, which is

∂

∂t

∫
dx

⟨ρ⟩2

2
=

∫
dx

[
−(Dn,turb −Dres

q )
∂⟨n⟩
∂x

∂⟨ρ⟩
∂x

−Dres
q

(
∂⟨ρ⟩
∂x

)2
]
. (25)

Hence, we see resonant diffusion of zonal vorticity saturates zonal flows in the frictionless

regime–i.e., its contribution to ∂t
∫
dx⟨ρ⟩2 is negative definite.
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The zonal vorticity profile is stationary when the net flow production is zero, i.e.,

∂t
∫
dx⟨ρ⟩2 = 0. Therefore, in the frictionless regime, the stationary vorticity profile is

determined by the balance between residual vorticity flux and the resonant vorticity diffu-

sion (i.e., so ⟨ṽxρ̃⟩ = 0) which implies

⟨vy⟩′′ ∼ − cs
ρsLn

(
1− 1

τckk2
∥D∥

k2
yρ

2
s + L−2

m ρ2s
1 + k2

yρ
2
s + L−2

m ρ2s

)
. (26)

In the relevant limit of near-adiabatic electrons, i.e., τckk
2
∥D∥ ≫ 1, the zonal flow scale is

LZF ∼
(
⟨vy⟩
cs

)1/2√
ρsLn. (27)

Only a fraction of turbulence energy is coupled to zonal flows. Thus, the flow magnitude is

obtained using mixing length estimation for the turbulence energy, and a coupling fraction

f :
⟨vy⟩2

c2s
∼ f

l2mix

L2
n

. (28)

Here, 0 < f < 1 is the fraction of turbulence energy coupled to the zonal flow. Note

that f and the mixing length are as yet unspecified. The flow scale follows as LZF ∼

f 1/4
√
ρslmix, which depends only weakly on f . Clearly, the mixing length is much larger

than the microscale (ρs) and can be as large as an extended cell (∼ Ln), i.e., ρs ≪ lmix ≤ Ln.

Indeed, lmix ∼ Ln is the appropriate “base state” scale, absent zonal flows. Thus, LZF

necessarily lies between the microscale (ρs) and the mixing scale (lmix). The questions are

to determine the relative weighting of lmix and ρs, and to account for shear modification of

lmix.

To determine lmix, note that the base state mixing length is reduced by zonal flow shear-

ing. This yields

l2mix ∼ l20
1 + (⟨vy⟩′τc)2

, (29)

where l0 is the mixing length for zero flow shear. In the case of drift wave turbulence, we

have l0 ∼ Ln for extended cells absent flow shear.

For weak or modest zonal flow shear, the decorrelation time is the eddy turnover time.

The eddy size is set by the mixing length and the eddy turning speed is set by the mean

square root of the velocity fluctuations. Then, we obtain τc ∼ ε−1/2 ∼ lmix/⟨ṽ2⟩1/2. The
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mixing length model yields ⟨ṽ2⟩/c2s ∼ (1 − f)l2mix/L
2
n. Thus, the mixing length is l2mix ∼

(1 − f)l20

/(
|⟨vy⟩|
cs

Ln

LZF

)2
. As a result, the zonal flow scale is LZF ∼ f 1/6(1 − f)1/6ρ

2/3
s l

1/3
0 .

The zonal flow shear is then |⟨vy⟩′| ∼ f 1/6(1− f)1/6 cs
Ln

(
l0
ρs

)1/3
.

For strong zonal flow shear, i.e., ⟨vy⟩′ ≫ eddy turnover rate, the decorrelation time is

set by τc ∼ (⟨vy⟩′2k2
rD)−1/3, i.e., the scale set by the well known interaction of shearing

and radial scattering[26]. Due to the strong zonal flow shear, the turbulent diffusivity

is resonant, so D ∼
∑

k |ṽr|2δ(ωk − kθ⟨vy⟩). The resonance time scale is controlled by

the shearing rate, which yields δ(ωk − kθ⟨vy⟩) ∼ |⟨vy⟩′|−1. Hence, the diffusivity becomes

D ∼ (1− f)(c2s/|⟨vy⟩′|)(l2mix/L
2
n). The mixing length is l2mix ∼ (1− f)2/3l20

/(
|⟨vy⟩|
cs

Ln

LZF

)4/3
.

The zonal flow scale is LZF ∼ f 3/16(1− f)1/8ρ
5/8
s l

3/8
0 . The zonal flow shear is then |⟨vy⟩′| ∼

f 3/16(1 − f)1/8 cs
Ln

(
l0
ρs

)3/8
. Here, the flow shear is larger, and the flow scale is larger. This

follows because |⟨vy⟩′| ∼ |⟨vy⟩|/LZF and both |⟨vy⟩|/cs and LZF increase with the underlying

drive scale (lmix). Nevertheless, the flow shear calculated here is close to that calculated for

the weak shear case. Hence, in both cases, the flow shear are similar.

In either case, the factors f and 1 − f enter with small exponents. Thus, the zonal

flow emerges as mesoscopic, but weighted somewhat more strongly toward microscale (ρs)

than macroscale (l0). Note that while the mesoscopic zonal flow scale, i.e., ρs < LZF < Ln

and LZF ∼
√
ρsLn in particular, is frequently assumed, here they are determined by the

analysis. The zonal flow shears in both cases are similar and robust. Even for the weak

shear case, the calculated zonal flow shear is significant. Hence, the case of strong zonal

flow shear–and thus flow resonance–is likely to be most relevant to the frictionless DW–ZF

system discussed here. Note that we have calculated the zonal flow scale and shear self-

consistently by considering the shearing feedback on mixing length. Externally driven flows

may enhance the flow shearing, and thus reduces the mixing scale.

This mesoscopic zonal flow appears as a limiting case with near-adiabatic electrons (i.e.,

τckk
2
∥D∥ ≫ 1). In this limit, zonal flow scale does not depend on wave-numbers (kyρs). When

τckk
2
∥D∥ is comparable to unity, LZF is linked to the mode scale. In that case, the resonance

between drift wave and zonal flow regulates the flow structure by modifying the local mode

scale. Also, the flow structure is sensitive to wave-numbers due to the second term of Eq.

(26). In the hydrodynamic limit (i.e., τckk
2
∥D∥ ≪ 1), the generation and saturation of zonal

flows must be reconsidered. The drift wave model discussed here is not directly applicable
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to the hydrodynamic case where convective cells, not drift waves, are generated.

The mixing length derived here allows us to calculate the scaling of turbulent diffusivity

with ρ∗ ≡ ρs/Ln. Following the mixing length model, the turbulent diffusivity scales as D ∼

lmixv∗, where v∗ ≡ ρscs/Ln is the electron drift velocity. Thus, we obtain D ∼ DBlmix/Ln,

where DB ∼ ρscs is the Bohm diffusivity. When there is no zonal flow, the mixing length is

the size of an extended cell, i.e., lmix ∼ Ln. This recovers the Bohm scaling, i.e., D ∼ DB.

In the presence of zonal flow shear, the mixing length is larger than ρs, and thus gyro-Bohm

scaling is a lower bound for turbulent diffusivity, i.e., D > DBρ∗. Hence, D lies between the

gyro-Bohm and Bohm limits, i.e., D ∼ DBρ
α
∗ where 0 < α < 1. The question is to determine

α, i.e., the degree of gyro-Bohm breaking. The mixing length in the case of strong zonal flow

shear is lmix ∼ ρ
1/4
s l

3/4
0 ∼ ρ

1/4
s L

3/4
n . This indicates that the scaling of turbulent diffusivity is

closer to the Bohm regime, i.e., D ∼ DBlmix/Ln ∼ DBρ
1/4
∗ (l0/Ln)

3/4 ∼ DBρ
1/4
∗ . Therefore,

the zonal flow shear leads to a gyro-Bohm correction to the diffusivity which is initially

Bohm, absent flow shear. As a result, the diffusivity lies somewhere between Bohm and

gyro-Bohm, but weighted more toward Bohm. Note the zonal flow shear here is determined

self-consistently by considering shearing feedback on mixing length. Externally driven flow

shears are not restricted by this self-consistent feedback mechanism. Thus, the external

flow shear could make the diffusivity weighted more toward gyro-Bohm, i.e., D ∼ DBρ
1/4+β
∗

where β > 0 is induced by external shear. External shear reduces the mixing scale through

the shearing feedback. Also, increasing external power input may lead to the formation of

transport barriers[15]. The barriers can then reduce the mixing scale and thus can make the

diffusivity more gyro-Bohm.

C. Extended Predator–Prey Model

The frictionless saturation induced by resonant PV mixing can be incorporated in the

predator–prey model of the DW–ZF system. In this subsection, we show the derivation of

this new, 0D model and compare the results with previous models. Note that even though

the 0D model studied here is sufficient to demonstrate the flow and turbulence states as

well as the flow scale, a model with at least one spatial dimension is necessary to study the

spatiotemporal dynamics of the system, such as the formation of transport barriers.

Eq. (25) shows that in the frictionless regime, the net production of zonal field enstrophy
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is driven by the vorticity flux. Ignoring the evolution of ⟨n⟩, the total mean-field PE is related

to the zonal vorticity through V ′′2 ∼
∫
dx⟨vy⟩′2/L2

ZF ≡
∫
dx⟨ρ⟩2/L2

ZF . The total fluctuation

PE is E ≡
∫
dxΩ. Zonal flow is driven by the residual vorticity flux, but dissipated by

the resonant scattering of zonal vorticity. Thus, the net mean-field PE is produced by

⟨ṽxρ̃⟩V ′′ = ΓRes
ρ V ′′ −Dres

q V ′′2 ∼ α1E|V ′′| −α2V
′′2E. Therefore, with frictional damping and

nonlinear damping by tertiary instability included, the predator (flow) equation is

L2
ZF

2

dV ′′2

dt
= α1|V ′′|E − α2V

′′2E − γNLV
′′2 − µcV

′′2. (30)

The vorticity flux conserves enstrophy between zonal field and fluctuations. Thus, the

residual vorticity flux forms a sink of the fluctuation PE and the resonant vorticity diffusion

forms a source. As a consequence, the prey (turbulence) equation can be written as

dE

dt
= −α1|V ′′|E + α2V

′′2E − εcE
3/2 + γLE. (31)

Here, baseline (i.e., without flow) nonlinear saturation of turbulence is through the forward

cascade of PE. Ultimately, PE is dissipated by collisional diffusion at small scales. The

linear growth of energy is due to the (linear) instability of fluctuations.

Eq. (30) and (31) form a new predator-prey model for the DW-ZF system. This model

conserves PE and includes resonant PV mixing. The model is zero dimensional, because the

quantities here have been integrated over space. Though the accuracy of this simplified 0D

model is limited, we can use it to obtain useful insights. In this new model, the net flow

production by turbulence consists of two terms, which are the turbulent production driven

by residual stress and the dissipation induced by resonant diffusion.

Eq. (30) shows that in the frictionless regime, where the frictional drag µc → 0, the

resonant vorticity diffusion saturates the zonal flow production, even without the nonlinear

damping induced by tertiary instability. It should be stated that drift wave instability

requires finite electron collisionality, while the frictional drag and collisional diffusion of

particles and vorticity are both determined by ion collisionality and/or ion-neutral drag.

Hence, flipping between frictional and frictionless regimes does not require a change in the

drift wave drive.

The flow and energy states are set by the fixed points of the system, i.e. dV ′′2/dt =
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TABLE II: Flow states and turbulence states compared among regimes with different frictional

damping rates. µc is the frictional drag coefficient, E is the turbulence energy (measured by

fluctuation enstrophy), γL is the linear growth rate of turbulence, and α1 and α2 are coefficients

in the predator–prey model resulting from residual vorticity flux and vorticity diffusion.

Regime Frictionless Weakly Frictional Strongly Frictional

Frictional Damping Strength µc ≪ α2E α2E ≪ µc ≪ 4γLα
2
1/ε

2
c µc ≫ 4γLα

2
1/ε

2
c

Flow |V ′′| α1

α2

α1γ2
L

µcε2c

γL
α1

Turbulence Energy E
γ2
L

ε2c

γ2
L

ε2c

γLµc

α2
1

dE/dt = 0. We ignore the nonlinear flow damping by tertiary instability, because it is

irrelevant (usually). Therefore, the flow state can be obtained from Eq. (30), and is

|V ′′| = α1E

α2E + µc

. (32)

We next discuss three regimes—the frictionless regime, the weakly frictional regime, and the

strongly frictional regime—and compare results to those of previous models. In particular,

we emphasize what determines the turbulence level and what affects the flow in near-marginal

turbulence. The states of zonal vorticity and turbulence energy are summarized in Table

II. In the frictionless regime, the turbulence energy level is set only by the linear instability

growth rate and the nonlinear dissipation of PE. This differs from the strongly frictional

regime, where the turbulence level is set by the frictional drag[3].

1. Frictionless regime

In the frictionless regime, the drag is negligible compared to the resonant diffusive scat-

tering of vorticity, i.e. µc ≪ α2E. The flow and turbulence states are given by

|V ′′| = α1/α2, (33)

E = (γL/εc)
2. (34)

The flow is determined, to leading order, by the balance between residual vorticity flux (α1)

and diffusive mixing of vorticity (α2). The turbulence energy is basically determined by the

balance between linear growth rate and dissipation rate of PE (εc).
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In the frictionless regime, turbulence energy is (approximately) independent of the flow

state. The turbulence energy is determined only by the linear instability drive and the non-

linear dissipation of PE. The dissipation rate tied to forward cascade of potential enstrophy

is ∼ εcΩ
1/2 ∼ εcE

1/2. The turbulence state is then set by the balance between the lin-

ear growth rate and the nonlinear dissipation rate, i.e. γL ∼ εcE
1/2, yielding E ∼ (γL/εc)

2.

When the linear drive is weak, i.e. γL/εc < 1, the turbulence becomes marginal, with E ≪ 1.

This is different from previous results, where turbulence energy is set by the frictional flow

damping. In previous models, below the onset threshold for tertiary instability, the flow is

dissipated only by frictional drag. The energy is coupled from turbulence to flow, which is a

one-way coupling. Therefore, the fixed point is set by the balance between the frictional flow

damping and energy coupling, i.e., αV E ∼ µcV , where α is the coupling coefficient between

flow and turbulence energy. As a result, the saturated turbulence energy E ∼ µc/α.

In addition, the saturated flow does not depend on the turbulence level, to leading order.

The balance between residual vorticity flux and the resonant vorticity diffusion sets the flow.

In this balance, the turbulence intensity cancels out. This means there can be significant

zonal flow, even when the turbulence is weak. Therefore, this new frictionless saturation

mechanism, induced by resonant PV mixing, is effective for turbulence near marginality.

In previous models, the flow is set by the difference between linear growth of turbulence

and frictional flow damping[1]. Those models are not relevant to near-marginal turbulence,

where γL → 0.

2. Weakly frictional regime

When the drag exceeds the rate of turbulent diffusion, i.e. µc ≫ α2E, the flow is linked

to the turbulence strength, which is given by

|V ′′| = α1E/µc. (35)

This follows because the flow is driven by turbulence, and collisions are the major source of

flow damping. Thus, in the near marginal regime, both the turbulence and the flow becomes

very weak, as the turbulence drive approaches zero.
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The turbulence energy can be obtained from

α2
1E

µcγL
+

εc
√
E

γL
− 1 = 0. (36)

The exact solution is

E =
ε2cµ

2
c

2α4
1

[√
1 +

4γLα2
1

ε2cµc

− 1

]
. (37)

Hence, in the weakly frictional regime, i.e. µc ≪ 4γLα
2
1/ε

2
c , the turbulence energy is the

same as in the frictionless case, while the flow is given by

|V ′′| = α1γ
2
L

µcε2c
. (38)

We thus see that the weakly frictional regime is a hybrid of the frictionless and strongly

frictional regimes. On one hand, the turbulence level is independent of flow damping, as

for the frictionless regime. On the other hand, the flow depends on the turbulence level,

meaning that when the turbulence is near marginal, the flow becomes very weak. This is

because the turbulence driven flow production must be strong enough to overcome frictional

damping, in order to drive a significant flow.

3. Strongly frictional regime

When the frictional flow damping is strong, i.e. in the strong frictional regime where

µc ≫ 4γLα
2
1/ε

2
c , the turbulence energy is set by the flow damping, which is given by

E = γLµc/α
2
1. (39)

This recovers the scaling trends of previous predator-prey models. The flow is given by

|V ′′| = γL/α1. (40)

Note that in this strongly frictional regime, the flow does not explicitly depend on frictional

flow damping, which is the same as for previous results. In this regime, zonal flows are

driven by the turbulence, and thus the flow curvature scales as |V ′′| ∼ γL. The turbulence
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energy here is controlled by both the linear drive and the flow damping. As a consequence,

the near-marginal state can be achieved by decreasing the linear forcing of the turbulence.

Therefore, zonal flow is weak, and thus the flow scale is large, in near-marginal (i.e., γL

approaches zero) turbulence with strong frictional drag.

The new predator–prey model presented here does not depend sensitively on the spe-

cific turbulence type. For comparison with the results calculated from the zonal vorticity

equation, we now use drift wave instability as an example. The coefficients are

α1 =
k2
yρscs

Ln

(
τck −

1

k2
∥D∥

k2
yρ

2
s + L−2

m ρ2s
1 + k2

yρ
2
s + L−2

m ρ2s

)
, (41)

α2 = k2
yρ

2
sτck. (42)

In the frictionless regime, the stationary zonal vorticity emerges as

|V ′′| = α1

α2

=
cs

ρsLn

(
1− 1

τckk2
∥D∥

k2
yρ

2
s + L−2

m ρ2s
1 + k2

yρ
2
s + L−2

m ρ2s

)
, (43)

which is consistent with Eq. (26). Vorticity gradient measures the jump across the flow

shear field. Thus, the ZF profile can be deduced from the zonal vorticity by specifying

boundary conditions. As shown by Fig. 4, for zonal flows, vorticity is equal to shear, which

is of greater interest than the flow velocity.

In the strongly frictional regime, the zonal flow curvature is determined by |V ′′| = γL/α1.

Next, we show that zonal flows are weak for drift wave turbulence. In the relevant limit of

near-adiabatic electrons, i.e., τckk
2
∥D∥ ≫ 1, we obtain α1

∼= τckk
2
yρscs/Ln to leading order.

As a result, the zonal flow curvature is

|V ′′| ∼ cs
ρsLn

1

τckk2
∥D∥

k2
yρ

2
s + L−2

m ρ2s
(1 + k2

yρ
2
s + L−2

m ρ2s)
3
. (44)

Using the mixing length model, we determine the zonal flow scale in the strongly fric-

tional regime, which is LZF ∼ (τckk
2
∥D∥K)2/3f 1/6(1 − f)1/6ρ

2/3
s l

1/3
0 , where K ≡ (1 + k2

yρ
2
s +

L−2
m ρ2s)

3/(k2
yρ

2
s + L−2

m ρ2s). The zonal flow shear is then |⟨vy⟩′| ∼ (τckk
2
∥D∥K)−1/3f 1/6(1 −

f)1/6 cs
Ln

(
l0
ρs

)1/3
. Therefore, the zonal flow shear in the strongly frictional regime is weaker,

and the scale is larger, than that in the frictionless regime, in the limit of near-adiabatic
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FIG. 4: For zonal flows, vorticity is equal to flow shear.

electrons, i.e., τckk
2
∥D∥ ≫ 1.

In the strongly frictional regime, the zonal flow scale is sensitive to wave-numbers, in

both limits of τckk
2
∥D∥ ≫ 1 and τckk

2
∥D∥ ∼ 1. Again, the case of hydrodynamic limit

requires further studies, which are beyond the scope of this paper. Note that collisional

friction competes with drift wave frequency (which is roughly equal to decorrelation rate)

in determining the plasma regimes, i.e., µc vs. ωk ∼ ω∗e = kyρscs/Ln. Therefore, shorter

wavelength, and thus larger wave-number kyρs, favors the frictionless regime.

IV. DISCUSSION

In this paper, we study how wave–flow resonance affects the linear stability of drift wave

turbulence, and how it regulates zonal flow saturation in the frictionless regime by resonant

vorticity mixing. The main results of this paper are:

• Resonance stabilizes drift waves due to wave absorption. Counter-intuitively, flow

shear can destabilize drift wave by weakening the resonance. This contradicts the

conventional wisdom of shearing effects.

• Resonance opens a new channel of zonal flow saturation, absent frictional drag, through

the irreversible turbulent mixing of vorticity. The scale of the stationary flow that

forms is mesoscopic, but weighted somewhat more strongly toward microscale than

macroscale. We show directly from analysis that the zonal flow scale is LZF ∼ f 3/16(1−

f)1/8ρ
5/8
s l

3/8
0 in the relevant adiabatic regime (i.e., τckk

2
∥D∥ ≫ 1). The flow shear scales

as |⟨vy⟩′| ∼ f 3/16(1− f)1/8 cs
Ln

(
l0
ρs

)3/8
.
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• We calculate the degree of gyro-Bohm breaking and show that the resulting turbulent

diffusivity is closer to the Bohm limit, i.e., D ∼ DBρ
1/4
∗ (l0/Ln)

3/4 ∼ DBρ
1/4
∗ . The base

state mixing length, absent flow shear, is l0 ∼ Ln.

• We incorporate the saturation by mixing of vorticity into the predator–prey model. In

contrast to previous results, the saturated flow is independent of the turbulence level,

to leading order, in the frictionless regime. Thus, it can be significant for the relevant

case of near-marginal turbulence. The turbulence energy is determined by the balance

of linear drive and nonlinear dissipation without involving flow damping, and gives

E ∼ γ2
L/ε

2
c .

In the presence of strong resonance, flow shear can linearly destabilize the drift wave

turbulence, which is opposite to what the conventional shear suppression models predict.

Resonance suppresses the instability as a result of wave absorption, and the flow shear

can weaken the resonance. Therefore, wave-flow resonance is an important factor to be

considered when studying the shear flow effect on stability, and on quasilinear fluxes that

transport particle, vorticity, and momentum.

The Dimits up-shift regime spans low to zero collisionality and consists of weak turbu-

lence near marginality. ZF saturation induced by resonant PV mixing is effective in both

the frictionless regime and for near-marginal turbulence, and thus is compatible with the

physics of the Dimits up-shift regime. Resonance regulates ZF saturation in the frictionless

regime without the need to invoke tertiary instability. The saturated flow does not depend

on the turbulence intensity. Hence, there can be significant zonal flows for near-marginal

turbulence, absent frictional damping.

The stationary flow profile is determined by the balance between residual vorticity flux

and the resonant diffusivity of vorticity. While ZF scale is often assumed, the new model

discussed here calculates the saturated flow scale in the frictionless limit. In the limiting case

with near-adiabatic electrons (i.e., τckk
2
∥D∥ ≫ 1), the ZF scale is mesoscopic, i.e., LZF ∼

f 3/16(1 − f)1/8ρ
5/8
s l

3/8
0 , in accordance with conventional assumptions. The mixing length

regulated by the zonal flow shear is then lmix ∼ ρ
1/4
s l

3/4
0 ∼ ρ

1/4
s L

3/4
n . This implies a Bohm-

like scaling of turbulent diffusivity, i.e. D ∼ DBlmix/Ln ∼ DBρ
1/4
∗ (l0/Ln)

3/4 ∼ DBρ
1/4
∗ ,

where DB is the Bohm diffusivity and ρ∗ ≡ ρs/Ln. Note that absent zonal flow shear, the

scaling is purely Bohm, i.e., lmix ∼ l0 ∼ Ln and D ∼ DB. As a result of zonal flow shear,
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the diffusivity scaling exhibits a gyro-Bohm correction, but weighted more toward Bohm.

The scaling takes into account zonal flow shears that are self-consistently determined by

shearing feedback on mixing length. Thus, externally driven flow shear may be needed to

achieve scalings that are more gyro-Bohm. The flow shear driven by external power sources

can reduce the mixing scale through shearing feedback. In addition, increasing the external

power input can lead to the formation of transport barriers[15]. The transport barrier so

formed could also reduce the mixing scale and thus could make the diffusivity weighted more

toward gyro-Bohm.

We have derived an extended predator–prey model, incorporating the resonant PV mixing

process. This new model is effective in the near-marginal turbulence. Thus, it can describe

zonal flow saturation in the Dimits up-shift regime. In the frictionless regime, the resonant

diffusion of vorticity leads to nonlinear saturation of zonal flow. The turbulence energy is

saturated by nonlinear enstrophy dissipation tied to forward cascade of potential enstrophy.

As a result, the turbulence energy scales with the linear forcing rate as E ∼ γ2
L. The

saturated flow does not depend on the turbulence intensity. Hence, there can be significant

flows in near-marginal turbulence. Therefore, frictionless ZF saturation by resonant PV

mixing is expected to be effective in weak turbulence regimes. In the frictional regime

with significant frictional flow damping, the dependence of turbulence energy level on flow

damping is recovered. The flow is driven by turbulence, while saturated by collisions. Hence,

in this limit, the flow is very weak in near-marginal turbulence. Note that in the frictionless

regime, the zonal flow structure does not depend on turbulence properties, such as wave-

numbers, in the relevant near-adiabatic limit. In the strongly frictional regime, the zonal

flow scale is sensitive to wave-numbers. Shorter wavelength, and thus larger wave-number

kyρs, favors the frictionless regime.

The model discussed here addresses the long-standing question of “how close is ‘close’” in

near-marginal systems. It is effective in both near-marginal turbulence and in the frictionless

regime. Thus, when expanded to 1D, it can be used to study avalanches and staircase

formation[19, 20]. In 1D, avalanching induces variability of profiles, and thus of local growth

rates. The scaling E ∼ γ2
L suggests a variability-dominated state can result when γL → 0.

This follows because γL has an exponent > 1, which holds true as long as the self-saturation

of fluctuation PE exhibits the dependence εcΩ
1+p, where 0 < p < 1. Thus, the scaling of E

with γL is stronger than the conventional weak turbulence result. The local linear growth
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rate is then set by both equilibrium (mean) and variable (i.e., avalanche-induced) profile

gradients, i.e., γL = γL + γ̃L. As a result of resonant PV mixing in the frictionless regime,

the turbulence state is determined by E ∼ γ2
L ∼ γ2

L+ γ̃2
L. γL is determined by the difference

between mean profile gradient and critical gradient. In near-marginal turbulence, the mean

gradient approaches the critical gradient, so γL → 0. Thus, there the turbulence state is

primarily controlled by noise from avalanche variability, i.e., E ∼ γ̃2
L ≫ γ2

L. Such noise is

produced by avalanching, which stochastically modulates the driving gradient. In this case,

the predator–prey model must be treated as a set of coupled stochastic differential equations.

In 1D, the relevant system is a nonlinear reaction–diffusion model like that of Eq. (22) and

(23), including multiplicative noise. The results in this work thus define the boundary for

“marginality”. The turbulence energy scales with the dimensionless ratio (γL/εc)
2, where

εc is the dissipation rate of PE. Therefore, the turbulence can be “marginal” when the

equilibrium growth rate γL < εc. This gives a basis upon which to define the extent of the

“near-marginal regime”.
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FIG. 5: Mode structure for various flow magnitudes, with fixed flow shear. The flow is given by

function Vy = Vmax tanh [(x− 0.5Lx)/LV ].

FIG. 6: Resonance (left) and growth rate (right) vs. flow magnitude, with fixed shear. The flow is

given by function Vy = Vmax tanh [(x− 0.5Lx)/LV ].
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FIG. 7: Mode structure for various flow shears, with fixed flow amplitude. The flow is given by

function Vy = Vmax tanh [(x− 0.5Lx)/LV ].

FIG. 8: Resonance (left) and growth rate (right) vs. flow shear, with fixed magnitude. The flow is

given by function Vy = Vmax tanh [(x− 0.5Lx)/LV ].
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