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Motivation

e Improved confinement in NT over PT tokamak experiments Is now well established. [Y Camenen+ 2007,
M Fontana+2018, M Austin+ 2019, A Marinoni+ 2019, S Coda+2022,...]

e Theoretical understanding lacking! TEM/ITG stabilization often invoked to explain improved confinement
In NT.
- TEM stabilization by precession drift reduction. [A Marinoni+ 2009]
- ITG turbulence and transport for NT remains poorly understood.

e Previous simulations lacked insights on physical mechanism behind the beneficial effects of NT on ITG .
Sometimes, not even general agreement on basic trends with 6!
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Questions remain...

e \What causes the reduced linear growth rate for NT?
e \What explains the 6-trend of heat flux?
- Relative role of fluctuations amplitude and cross-phase in determining the heat flux for NT?
- Saturation by zonal flows well known Iin GK simulations [Z Lin+ 1998,1999,...others].
- What happens to self-generated zonal flow shear for NT?

- What sets the strength and coherence of zonal shear ? — Gyrokinetic entropy transfer analysis?



Simulation set up

Disclaimer: This Is a physics study, not an experimental validation exercise.
GENE flux tube simulations of collisionless ITG turbulence with adiabatic electrons.

Shaping parameters: aspect ratio a/R = 1/3, safety factor g = 2, magnetic shear §=1, triangularity

.9
or 0

V(1 =62 ) V(1 =62

0 0
S = . 0, squareness ¢ =0, squareness gradient N r—(: =0, MHD alpha parameter
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dp

Ayp = — quE = 0, Shafranov shift gradient R, = 0. (Standard GA + shaping)

0 = [varied], triangularity gradient S; = , elongation x = 1, elongation gradient

Resolutions: n, =257, m =48, n, =64, n, =48, n, =8, L, =3, L, =9, L, =[120 - 140]p;,
k = 0.05, hyp z=2, hyp v=0.2

y,minpi
Gradients: a/L, = 1, a/L; = 4 [fixed]
Collisionless:=> no frictional damping of ZF.
No neoclassical transport.



Linear growth rates reduced and critical gradient increased for NT
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Nonlinear Heat flux vs Triangularity

Bl IR R IR I SRR MR 6.5 e Turbulent heat diffusivity lower for NT than for
 [Singh, Diamond, Marinoni NF 2024] ; pT

e High k, contributions (RHS of the spectral
peak) depleted more for NT.

L —0 = —0.6

a Y& )
Amplitudes||Cross-phase

. Heat flux Q; = < Zk: - kyj 7| | qbkj sin(6 - 9¢l>

e Relative role of fluctuations amplitude and cross-
phase?




Saturated fluctuation intensity and transport cross-phase vs Triangularity
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e Cross phases between temperature and potential
fluctuations (6, — 6,) are weakly sensitive to 6.
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= Transport reduction for NT Is pre-dominantly due to

reduction of fluctuation amplitudes.
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Fluctuations auto-correlation and random walk diffusivity
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e Auto-correlation time higher for NT: z.(NT) > 7.(PT)

e Radial auto-correlation length lower for NT: [ (NT) < [ .(PT) [Consistent with TCV experiment: M

Fontana+ 2018]
12
= Random walk diffusivity — lower for NT.
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Zonal ExB shearing rates: w — k spectra
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e Shearing spectra are highly sensitive to o.
e No dispersive effect for o = — 0.6
o Clear dispersive effects for 6 = O—propagating zonal flows (New branch)
e \Weak dispersion for 6 = + 0.6

e The spectra roll over at ~GAM frequency



Zonal ExB shearing rates: spatiotemporal features
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[Singh, Diamond, Marinoni NF 2024]

e Spatiotemporal patterns are highly sensitive to o.
e Spatiotemporal shearing pattern more coherent for NT than for PT. (\Why?)
e Propagating shearing fronts — dispersive feature for 6 = 0! Front speed ~ 2.25p,v,,.

e More coherent spatiotemporal shearing pattern for NT — Stronger mean shearing effect for NT.
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RMS Zonal ExB shearing rates at saturated state

o Zero-frequency RMS shearing rate higher for NT than for PT.

e Total RMS shearing rate and finite frequency RMS shearing rate

decreases with increasing | o] .
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RMS shearing rate depends on the detail of the shearing spectra at saturated state

[Singh, Diamond, Marinoni NF 2024]

e Different o-trend of zero-frequency shearing rate and zonal potential spectra.
e Zonal shear peak at k_p, ~ 0.5 whereas zonal potential peak at £, p; ~ 0.05.

e Shearing peak stronger while potential peak weaker for NT.
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: Zonal potential peaks weaker for NT
ggearmg peaks stronger for NT than for for PT. But zonal potential isn’t the

point.
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Figure of Merit

[Singh, Diamond, Marinoni NF 2024}
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Quantifying zonal shear coherence

e Zonal shear life time is higher for NT.
e Radial size of zonal shear higher for NT.
= \More spatio-temporal coherence of zonal shear for NT.
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e But..., why Is the zonal shear more coherent for NT?
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Why Is the zonal shear more coherent for NT?
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Summary

Novel insights into how NT mitigates ITG turbulence and transport — wzz. or wz/y,, .. as figure of merit.

Reduced linear growth rate for NT <« Reduced eigenmode averaged magnetic drift frequency.

o-trend of diffusivity — Predominantly determined by o6-trend of fluctuation amplitude. Cross-phase effect
weak.

Reduced heat flux for NT < Reduced radial correlation length and increased correlation time due to
Increased zero-frequency zonal ExXB shearing rate.

Enhanced coherence of zonal shear for NT <« reduced back-transfer of energy from zonal mode to
turbulence. = more resilient shear layer for NT.

[Singh, Diamond, Marinoni NF 2024]
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Future work

o Better understand the role of zonal back-transfer on collisionless zonal flow saturation dynamics.

o Analysis using experimental equilibria and profiles and using non-adiabatic electrons and finite collisionality
exploiting both local and flux driven global simulations.

For experiments

e Measure w — k spectra of the zonal flow shear. Identify finite frequency components? Spatio-temporal
features of zonal shear, signatures of propagating zonal fronts—BES velocimetry

XQY
o Back-transfer events: Time series of Reynolds power <a 0)
r

(\'7,,\7H> vs triangularity to elucidate turbulence —

zonal flow energy coupling? —BES velocimetry.

e Calculate FOM wgt.vs 6. Radial correlation length and auto-correlation time of fluctuations and zonal flows.
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Back-up slides
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Heat flux avalanches

e Avalanches also seen in heat flux space time evolutions. [Singh, Diamond, Marinoni NF 2024]
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Temperature corrugations dynamics

(a)ZonaI temperature spectrally anti-correlated with zonal potential I <=, Consequently, zonal ExB
shear wy 1s spatially anti-correlated with zonal temperature curvature VZTZ.

(b)Zonal temperature corrugations are stronger for NT than for PT.
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