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Introduction

Drift-wave plasma features rich nonlinear (and nonlocal)
phenomena

Of particular interest are zonal flows, turbulence spreading,
and subcritical turbulence, each of which have profound
implications for turbulent transport

Problem: how can we realistically model these phenomena?
How do they relate to each other and interact?

This poster presents research on this problem in two parts:
1 A recently published model for subcritical turbulence spreading
2 Progress on a new technique that uses machine learning to

infer features of the full mean-field dynamics from simulation



Background: turbulence spreading

Radial propagation of turbulence,
characterized by traveling fronts
and pulses in turbulence intensity

Can be thought of as driven by
nonlinear scattering of ballooning
modes. In an envelope
approximation, this yields a term
∂t I ∼ ∂x I∂x I for turbulence
intensity I

Leads to nonlocality: the turbulent
flux cannot be described by a local
Fick’s law since the turbulence
intensity is influenced by dynamics
occurring at other spatiotemporal
locations

Figure Spatiotemporal evolu-
tion of turbulence field from
simulation



Background: subcritical turbulence I

Defined by self-sustaining turbulence below the threshold for
linear instability

Differs strongly from the conventional picture that plasma
turbulence is strongly suppressed below the critical gradient

Characterized by coexistence of laminar and turbulent
domains. Generic model is bistable:

∂t I ' −aI + bI 2 − cI 3

as opposed to supercritical case with positive linear
coefficient. Note nonlinear instability term (∝ I 2)



Background: subcritical turbulence II

Long known to exist in fluid
flows. Increasingly
acknowledged to exist in
confined plasma, e.g. in
presence of magnetic shear
[Biskamp and Walter, 1985]
or strong perpendicular shear
flow [Barnes et al., 2011]

Experiments
[Inagaki et al., 2013] also
hint at bistability by
demonstrating hysteresis
between the fluctuation
intensity and the gradient, in
the absence of a transport
barrier

Figure Turbulence energy self-
sustains beyond a threshold
level, in a subcritical, modi-
fied version of 3D HW model
[Friedman and Carter, 2015]



Key questions

Nonlinear diffusion model of spreading really describes the
total turbulence energy, including ZFs. Not necessarily a good
model for the spreading of the fluctuations alone. How to
improve?

ZFs can be expected to spread with fluctuations but to
themselves suppress the fluctuations/spreading. How to
describe this interplay?

What determines the saturated ZF profile?

Physics of subcritical turbulence? When do we expect it, and
how does it affect spreading?

Seek answers with the aid of reduced models



Bistable turbulence spreading: Fisher model

As a first step, we study turbulence spreading in a
subcritical/bistable system

Simplest, most common model for spreading is supercritical
(Fisher equation):

∂t I = γ0I︸︷︷︸
local lin.

growth/decay

− γnl I
2︸︷︷︸

local nonlin.
coupling to
dissipation

+ ∂x (D0I∂x I )︸ ︷︷ ︸
nonlin. diffusion of turb. energy

If system unstable (γ0 > 0), turbulence propagates via fronts
connecting laminar and saturated fixed points I = 0, γ0/γnl



Bistable turbulence spreading: problems with Fisher

Fisher doesn’t make a whole lot of
sense: why do we need spreading if the
system is unstable in the first place?

Also, penetration of turbulence into
stable zone is feeble, with a depth on
the order of just a few ρi . Dubiously
consistent with clear experimental
observation of fluctuations in stable
zones

Resolution: use subcritical model,
which allows for coexistence of laminar
and turbulent domains
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Figure Evanescent penetra-
tion of Fisher front into sta-
ble zone



Bistable turbulence spreading: new model

We propose [Heinonen and Diamond, 2019] a new model:

∂t I = γ1I + γ2I
2 − γ3I

3 + ∂x (D0I∂x I ) (∗)

Roughly anticipate γi ∼ ω∗,D0 ∼ χGB ∼ csρ
2
i /a

Motivation: simplest, generic 1D model with subcritical
bifurcation. Other forms possible, but qualitative features
should be the same!

Similar to [Barkley et al., 2015, Pomeau, 2015] models for
onset of turbulence in pipe flow

Supported by aforementioned observations of subcritical
turbulence



Bistable turbulence spreading: key predictions

Supports traveling turbulence
waves in (weakly) subcritical
regime, unlike Fisher. Speed
∼
√
Dγ (coeff. depends on γi ’s)

Turbulence can then strongly
penetrate subcritical regions via
ballistic propagation

As a bonus, this model also
predicts avalanche-like behavior,
due to local threshold behavior: an
initially localized seed of turbulence
can propagate if it exceeds
threshold
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Figure A wave develops in the
unstable zone, penetrates into
the bistable zone, and forms a
new traveling wave with reduced
speed and turbulence level.



Bistable turbulence spreading: avalanche threshold I

First transform to
Zeldovich-Frank-Kamenetsky form

∂t I = γI (1− I )(I −α) + ∂x (DI∂x I )

If puff is to spread, intensity must
exceed I = α somewhere, otherwise
effective linear growth
γeff = (I − α)(1− I ) is negative

How “wide” must the puff be?
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Figure A puff will either grow
into a wave (above) or collapse
(below) depending on its width



Bistable turbulence spreading: avalanche threshold II

Can estimate by assuming initial
growth of turbulent mass in “cap”
(part > α) of slug governs
asymptotic spreading

Threshold then determined by
competition between outgoing
diffusive flux from cap and local
growth in cap

This competition suggested by
form of free energy functional

Leads to power law
Lmin ∼ (I0 − α)−1/2. Excellent
agreement with simulation of PDE
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Figure Illustration of slug’s
“cap”



Bistable turbulence spreading: avalanche threshold III
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Figure Numerical result for threshold at α = 0.3 for three types of initial
condition (Gaussian (I1), Lorentzian (I2), parabola (I3)), compared with
analytical estimate



Bistable turbulence spreading: avalanche threshold IV

So: an initially localized turbulent slug with amplitude
exceeding I− = α and spatial extent exceeding Lmin will
spread and excite the system to turbulence

Near marginal linear stability, threshold is “small”:

I− ∼
|γ1|
γ2
� 1, Lmin ∼

(
χGB

ω∗

)1/2

∼ ρi

Thus noise (e.g. background sub-ion-scale turbulence) can
intermittently excite turbulence pulses. This can be thought
of as a simple model for avalanches



Conclusions for bistable model

Updating the unistable Fisher model to a bistable model
simultaneously resolves several issues

1 Properly allows for coexistence of laminar and turbulent
domains so that fronts are physical

2 Reflects the emerging understanding that MF turbulence is
subcritically unstable, at least in certain scenarios

3 Allows for stronger penetration into stable zone via ballistic
spreading

Also functions as a basic model for avalanching by local
excitation

But:
1 This model is still dumb: realistic model needs to properly

treat coupling to zonal flow and profiles, also nonlinear
diffusion is a dubious model for spreading term

2 Can we find a firm justification for the subcritical nonlinearity?



Mean field dynamics I

Let’s try to properly attack the problem, with the density
profile, zonal flow field, and turbulence field treated on an
equal footing

Start with Hasegawa-Wakatani (simplest model for drift-wave
turbulence):

∂tn + {φ, n} = α(n − φ) + dissipation

∂tζ + {φ, ζ} = α(n − φ) + dissipation

with ζ = ∇2
⊥φ and α = η∂2

‖ the adiabatic operator

(representing parallel electron response)



Mean field dynamics II

Averaging over symmetry directions (〈· · · 〉) yields

∂t〈n〉+ ∂x〈ñṽx〉 = diss.

∂t〈ζ〉+ ∂x〈ζ̃ ṽx〉 = diss.

∂t〈ε〉+ 〈(ñ − ζ̃)ṽx〉∂x〈n − ζ〉+ ∂x〈εṽx〉 = diss.

Here ε = (ñ− ζ̃)2 is the turbulent potential enstrophy, a proxy
for the turbulence intensity

Thus the problem is one of modeling the turbulent fluxes
Γq = 〈q̃ṽx〉 (q = n, ζ, ε). Can we write down a mean field
theory where Γq is a function of local 〈n〉, 〈ζ〉, 〈ε〉 and
derivatives?



Mean field dynamics III

To proceed, Ashourvan and Diamond (2016) used quasilinear
theory with a mixing-length approximation (dropping 〈· · · 〉
henceforth):

Γn = −Dn∂xn

Γζ = (χ− Dn)∂xn − χ∂xζ

Γε = −Dε∂xε

with

Dn ∝ `2ε, χ ∝ `2ε/(α + ζ2)1/2, Dε ∝ `2ε1/2

Mixing-length ansatz à la Balmforth, Llewellyn Smith, and
Young (1998)

` =
`0

(1 + `2
0[∂x (n − ζ)]2/ε)κ/2

models inhomogeneous mixing of potential vorticity n − ζ



Beyond Ashourvan and Diamond: machine learning

How to go beyond this model, which is somewhat ad hoc?
Can we use a similar model to capture nonlinear
instability/subcritical turbulence?

The latter likely requires going beyond QLT. Very difficult to
treat analytically

Instead, we suggest gleaning the model from full simulation of
dynamical equations (here, HW), using machine learning as a
form of nonlinear, model-free regression

Can exploit ML techniques to avoid overfitting and local
minima



Constraining the model with symmetry

Formally, we seek maps which send local profiles to local
fluxes, i.e. fq : (n, nx , nxx , . . . , φ, φx , ζ, ζx , . . . , ε, εx , . . . ) 7→ Γq

Symmetries of HW constrain the problem considerably:
1 Invariance under uniform shifts n→ n + n0 and φ→ φ+ φ0

eliminate dependence on n, φ
2 Invariance under boosts in y{

φ → φ+ v0x

y → y − v0t

eliminates dependence on ZF speed φx

3 Also have reflection symmetries x → −x , y → −y and
φ→ −φ, n→ −n, x → −x which require, roughly speaking,
that Γq → −Γq under ∂xq → −∂xq



Initial results I

As proof of concept, start with
simpler 2D HW equations (α is
now a constant). To study
subcritical turbulence, eventually
need to go to 3D!

Simple NN trained on simulations
with varying initial profiles. Data
averaged over mesoscopic windows
in x to achieve reasonable statistics

Reflection symmetries enforced by
duplicating data with appropriate
signs flipped

Curved density profiles chosen to
sample many gradients and allow
turbulence to invade linearly stable
regions

Figure Snapshot of vortic-
ity field in typical simulation,
which invades leftward into
region of low density gradient



Initial results II

Early results show that Γn and Γζ couple to ∂xn in a way
qualitatively consistent with Ashourvan-Diamond, including
saturation of flux at large gradient

Figure Curves (at fixed ζ = 1, ζx =
εx = 0, and various ε) of density flux
vs density gradient

Figure Curves (at fixed ζ = 1, ζx =
εx = 0, and various ε) of density flux
vs density gradient



Conclusions from initial results and further work

Reflection symmetry not exactly enforced: how to improve?

Coupling of fluxes to vorticity profile not clear from
simulation. Likely because turbulence-driven shear flow here
not strong enough (say to drive KH turbulence). Requires
further investigation

More work required to understand enstrophy flux. Highly
intermittent, largely carried by point vortices and their
interactions! Simple gradient model doesn’t appear to work:
can we construct a model for spreading based on mutual
vortex induction?!

Beyond mean field theory: fluctuations from mean fluxes
appear to scale with enstrophy (unsurprisingly). Suggests
addition of multiplicative noise to model. How does this affect
dynamics?



For the experimentalist/simulation practitioner

Bistable model suggests several experiments
1 Variations on a theme by Inagaki. Better resolution of

dependence of fluctuation intensity on the input power? More
careful study of relaxation after ECH is turned off? More
information on fluctuation field (e.g. spatial correlations)?
Simultaneous measurement of zonal flow pattern?

2 To investigate avalanches: perturb plasma locally, observe
spatiotemporal response à la [Van Compernolle et al., 2015].
Compare near-marginal, far above marginal to rule out
possibility of linear mode response

3 Can we see ballistic penetration of stable region in numerical
experiments?

Reduced models require tuning. The ML technique represents
a possible route to improved reduced models (say, beyond
QLT), by letting the machine do the tuning. There has been
some recent work on this, e.g. [Citrin et al., 2015]
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Avalanching 101

Observed in MFE plasma [Politzer, 2000]

Basic picture: a sufficiently large, localized increase in the
turbulence level radially cascades into neighboring regions,
ultimately causing a sudden burst of transport

Closely related to turbulence spreading: avalanching and
(subcritical) spreading essentially two ways of looking at same
phenomenon

Associated with self-organized criticality (occurs near
marginal, 1/f spectra)

Intermittent (long tails)



Bistable case: reduction to FitzHugh-Nagumo

(∗) is bistable for weak damping γ1 < 0 and γ2
2 > 4|γ1|γ3

Roots: I = 0, I± = (γ2 ±
√
γ2

2 − 4|γ1|γ3)/2γ3. 0, I+ stable

(note: nonzero for marginal γ1), I− unstable

If γ1 < 0 and γ2 sufficiently large, can be written

∂t I = f (I ) + ∂x (D(I )∂x I )

with f (I ) = γI (I − α)(1− I ) by defining

|γ3|I+
2 → γ,

I−
I+
→ α, I+D0 → D

This is a version of the Nagumo equation, a simplification of
the FitzHugh-Nagumo model for excitable media
[FitzHugh, 1961, Nagumo et al., 1962]



Lengthscale threshold (details)

Strategy: assume initial slug is even, has single max at I0 and
single lengthscale L

Expand intensity curve about max to quadratic order, plug
into dynamical equation, integrate over extent of cap

Result: growth if

L > Lmin =

√
λD(α)I0

f (I0)− 1
3 (I0 − α)f ′(I0)

=

√
3λDαI0

γ(I0 − α)((1− 2α)I0 + α)



E × B staircase

E × B staircase: quasiperiodic shear
flow pattern observed in GK
simulation [Waltz et al., 2006]

[Guo and Diamond, 2017] showed that
in mean field approx., result is
additional nonlinear drive term,
equation of the type (∗) → global
bistability

Basic physics: inhomogeneous
turbulence mixing. Shear suppression
of turb. heat flux → effective negative
turbulent heat diffusion →
temperature corrugations → critical
gradient locally exceeded →
turbulence growth → further profile
roughening

Figure Profile cor-
rugations correlate
with E × B shear (from
[Dif-Pradalier et al., 2010])



For cold ions, described by Hasegawa-Wakatani model:

∂tn + {φ, n} = α(n − φ) + diss.

∂t∇2
⊥φ+ {φ,∇2

⊥φ} = α(n − φ) + diss.

with α = η∂2
‖ the adiabatic operator representing parallel

electron response



Zonal flows

Poloidal, sheared E × B flows with
n = 0 and ω = 0

Robust and ubiquitous, driven by
modulational instability on packet of
drift waves

Shear drift wave eddies, leading to a
reduction in turbulence transport. ZF
formation widely believed to be
involved in the L-H transition

Figure Obligatory picture
of Jupiter’s bands, a clas-
sic example of ZF


