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A minimal model of nonlinear phase dynamics in drift waves is shown to support phase bore solutions. Coupled
nonlinear equations for amplitude, phase, and zonal flow are derived for the Hasegawa-Mima system, and specialized
to the case of spatio-temporally constant amplitude. In that limit, phase curvature (finite second derivative of the phase
with respect to radius) alone generates propagating shear flows. The phase field evolves nonlinearly by a competition
between phase steepening and dispersion. Analytic solution of the model reveals that the phase bore solutions so
obtained realize the concept of a phase slip in a concrete dynamical model of drift wave dynamics. The implications
for phase turbulence are discussed.

I. INTRODUCTION

Anomalous transport and its prediction continue to be foci
of interest in plasma and fusion theory. The central theoreti-
cal problem related to turbulent transport is the calculation of
the fluxes, such as 〈ṽrñ〉, 〈ṽrT̃ 〉, 〈ṽr ṽφ 〉, etc. Fluxes are deter-
mined by fluctuation intensities, such as 〈ṽ2

r 〉, 〈ñ2〉, 〈T̃ 2〉, etc.,
and, notably, the cross-phase between the fluctuations which
determine the flux. Here, if the particle flux is Γ = 〈ṽrñ〉, the
relevant cross phase is given by cosθ = 〈ṽrñ〉/〈ṽ2

r 〉1/2〈ñ2〉1/2,
i.e. the cosine of the angle between the radial velocity fluc-
tuation and the density fluctuation. The flux is set by a prod-
uct of three elements, namely two rms fluctuation levels (here
〈ṽ2

r 〉1/2, 〈ñ2〉1/2) and the cross phase. We note in passing that
even if individual fluctuations follow a Gaussian probability-
distribution, the flux can exhibit a non-Gaussian tail.

Of course, the dynamic relation of fluxes to fluctuation in-
tensities has been studied intensively, and discussed in hun-
dreds, if not thousands, of papers1. However, the actual dy-
namics of the cross-phase has received considerably less at-
tention. Usually the cross-phase is taken as set by the ratio of
the spectral autocorrelation rate (i.e. for quasilinear analyses)
or the response decorrelation rate (i.e. for nonlinear analyses)
to the frequency2. A few studies at least allow for a change
in cross-phase at a transport bifurcation — say, as a result of
the effect of strong E×B shear on the autocorrelation time3.
In general, however, the cross-phase is treated as a prescribed
function of plasma parameters.

Recently however, there is increasing awareness that the
phase adjusts dynamically, and thus must be treated as evolv-
ing in time on mesoscopic, and even microscopic, time
scales4. Such time dependence can profoundly affect trans-
port. In addition, the cross-phase may be spatially multi-
scale, and so manifest a mesoscopic envelope structure. Both
of these phase dependencies are neglected in quasilinear the-
ory or simple nonlinear models, such as resonance broadening
theory5. These observations point to a need to consider the
role of phase dynamics in turbulent transport and fluctuation
evolution6. Note that phase dynamics has long been a central
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element of pattern formation theory7. One example of an ap-
proach to flow pattern formation is that of D.Y. Manin8, which
utilized a hodographic technique to formulate the coupling of
waves and vortices. Pattern formation in drift wave-zonal flow
turbulence is reviewed in ref. (9) and in ref. (11).

One time dependent phenomenon in phase dynamics is the
phase slip, i.e. an abrupt jump in the phase which occurs be-
tween longer time periods of constant phase. Phase slips occur
in systems governed by the Adler equation9, the general form
of which may be written as

d
dt

∆φ =−(ω−ω0)+ εq(∆φ)

Here, ∆φ = φ −ωt is the difference between the phases of
the forcing and the oscillation. Depending on q, the phases
can either lock or slip, and so assume very different values,
with (possibly very) different implications for the transport
flux. One concrete realization of the Adler equation structure
in a fusion-related problem was suggested in Ref. 4, which
addressed phase dynamics of ballooning modes in the con-
text of a 0D model of ELMs. There, ω0 was the (prescribed)
E×B shearing frequency, and q(∆φ) was related to the trans-
port flux. The upshot was that the phase would hover for long
periods at a value which gave zero transport, but jump or slip
during short intervals, during which transport occurred and
profiles relaxed. Thus, transport is determined by phase evolu-
tion on multiple time scales. The discussion above motivates
our desire to deeply understand the evolution and dynamics
of cross-phase in drift wave-zonal flow turbulence10, in the
context of a minimal model containing the relevant physics.
The goal here is to understand what types of spatio-temporal
phase structures and/or solutions are manifested in the system.
A model which is more realistic than that of Ref. 4 is required.
To isolate phase dynamics, a simplifying restriction of spatio-
temporally constant mode amplitude is imposed. In this limit,
the requisite Reynolds force for zonal flow generation is pro-
duced by the phase curvature11, i.e.

−∂x〈ṽr ṽθ 〉 '∑
ky

|Aky |
2ky∂

2
x ψky

' |A|2 ∑
ky

ky∂
2
x ψky

Thus, the system can be reduced to 1D equations for the
space-time evolution of the phases and flow. Note how phase
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curvature is simply the second derivative of the phase ψ with
respect to x, i.e. ∂ 2

x ψky . It does not refer to the Gaussian cur-
vature. Finite phase curvature here is equivalent to a spatially
varying radial wavenumber, ∂xkx 6= 0.

In this paper, we analyze a minimal model of phase dy-
namics of the drift wave-zonal flow system. Coupled non-
linear equations for amplitude, phase, and zonal flow field
are derived for the Hasegawa-Mima system12. The phase is
treated on equal footing with the other fields. In order to fo-
cus on phase dynamics, we consider only the case of spatio-
temporally constant amplitude. We show that energy is con-
served between flow and fluctuations in this limit. Phase
curvature (∂xkx 6= 0) sets the Reynolds force. The coupled
phase and flow system generates propagating solutions, i.e. of
the form 〈vy(x, t)〉 = 〈vy(x− ct)〉. The associated phase field
evolves nonlinearly by a competition between phase steepen-
ing and dispersion, much as a collisionless shock or soliton
does13. Explicit analytic solutions for the system are obtained.
The propagating shear layer is accompanied by a propagating
‘phase bore’ structure (see Fig. 2). This realizes the concept
of a phase slip (motivated by the simple and generic Adler
equation) in a concrete dynamical model of drift wave-zonal
flow turbulence. In particular, we see that the phase slip ap-
pears as a propagating space-time structure — a bore. The
implications for a state of phase turbulence are discussed. We
note that an ensemble of phase slips should exist in turbulence,
and lead to stochastic variation of the frequency and the asso-
ciated flux (through its effect on ω−ω∗e ).

The remainder of this paper is organized as follows. Sec-
tion II gives the model and basic system of equations. In sec-
tion III, the physics of phase and flow evolution are discussed.
Phase bore or slip and shear layer solutions are presented in
section IV. Section V presents conclusions and discussion.

II. MODEL AND SYSTEM OF EQUATIONS

We consider drift wave evolution using the minimal model
— the Hasegawa-Mima equation — with self-consistent zonal
shear flow14,15:

0 =∂t

(
φ̃ −ρ

2
s ∇

2
φ̃

)
+ v∗∂yφ̃ +vE ·∇

(
φ̃ −ρ

2
s ∇

2
φ̃

)
−

ṽE ·∇
(

ρ
2
s ∇

2
φ

)
+ ṽE ·∇

(
φ̃ −ρ

2
s ∇

2
φ̃

) (1)

Here, ρ2
s = Te/(miΩ

2
i ), v∗ = ρ2

s Ωi/Ln where Ln =
−(dxn0/n0)

−1, and vE = ρ2
s Ωi ẑ×∇φ , which is the E×B

drift with B pointing in ẑ, i.e. the axial or toroidal direction.
Both the flow and the electrostatic potential field φ have been
separated into their respective microscale fluctuations ( ·̃) and
mesoscale mean ( ·). Since we approach the problem through
mean field theory, the last term on the right hand side of Eq.
(1), representing fluctuation nonlinearity, is dropped hereafter.

The evolution of the zonal flow (kθ = 0,kz = 0) is described
in 2D by

∂t〈vy〉= ρ
4
s Ω

2
i ∂x〈∂yφ̃ ∂xφ̃〉−µ〈vy〉 (2)

where 〈vy(x)〉 ≡ vE · ŷ is the velocity of the zonal flow (av-
eraged in the poloidal direction), 〈∂yφ̃ ∂xφ̃〉 is the Reynolds
stress, x̂ represents the radial direction, and µ is the drag
damping coefficient. Here, drag (usually associated with
toroidal effects) is inserted ad-hoc into an otherwise slab
model. The purpose of the drag is to provide a scale-
independent damping which limits flow evolution on large
scales.

To systematically investigate the role of dynamic phase
evolution in the DW-ZF system, we write the DW fluctuation
as φ̃ = A(x,y, t)eiψ(x,y,t) , where ψ(x,y, t) is the phase of the
drift wave and A(x,y, t) is the amplitude. As both the ampli-
tude and phase are real, we separate the real and imaginary
parts of Eq. (1), which gives the amplitude equation

0 = ∂tA+(2∇A ·∇ψ +A∇
2
ψ) χ̂(ψ)+(∇ψ)2

χ̂(A)−

χ̂(∇2A)+2A∇ψ · χ̂(∇ψ)+ 〈vy〉∂yA+

ρ
2
s 〈vy〉′′∂yA+ v∗∂yA

(3)

and the phase equation

0 =A∂tψ−2∇ψ · χ̂(∇A)−2∇A · χ̂(∇ψ)−

(∇2A−A(∇ψ)2) χ̂(ψ)−∇
2
ψ χ̂(A)−A χ̂(∇2

ψ)+

ρ
2
s 〈vy〉′′A∂yψ + 〈vy〉A∂yψ + v∗A∂yψ

(4)

respectively. Here, we define the differential operator χ̂ ≡
ρ2

s (∂t + 〈vy〉∂y).
The flow evolution equation follows as:

1
ρ4

s Ω2
i

∂t〈vy〉=∂
2
x A∂yA+∂xyA∂xA+

A2[∂ 2
x ψ∂yψ +∂xyψ∂xψ]+

2A∂xA∂xψ∂yψ− µ

ρ4
s Ω2

i
〈vy〉

(5)

Eqs. 3, 4 and 5 thus systematically describe the evolution of
the amplitude, phase, and the flow, respectively. Note that the
flow can evolve via amplitude inhomogeneity or phase curva-
ture.

III. PHASE AND FLOW EVOLUTION

In this section, we explore coupled phase and flow evolu-
tion for the limit of a single wave with amplitude A = const.
The purpose of considering this unusual limit is to isolate the
role of phase curvature in the Reynolds force, so as to better
understand the physics of phase dynamics. The physics of in-
tensity (∼ |A|2) inhomogeneity in flow generation has been
well studied16,17.

We focus on the terms ∼ A2 in Eq. 5. These capture
wave interactions which drive the flow. The second term in
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the expression disappears once averaged, since ∂xyψ∂xψ =
1
2 ∂y(∂xψ)2, the average of which vanishes. However, the first
term clearly indicates the possibility of driving zonal flows
through the radial curvature of the phase (i.e. ∂ 2

x ψ 6= 0), even
for homogeneous intensity (i.e. ∇I = ∇(A2) = 0)11.

Alternatively, if one were to represent the drift wave by
the usual eikonal form, such that φ̃ = Aei(k·x−ωt) where
k = (kx,ky) ∼ (∂xψ,∂yψ) and x = (x,y), the Reynolds stress
〈∂yφ̃ ∂xφ̃〉 would then reduce to kxkyA2, for constant am-
plitude. By going beyond lowest order eikonal theory, we
see that the radial derivative of the stress also acts upon
the cross phase kxky. The radial gradient of the Reynolds
stress ∂x〈∂yφ̃ ∂xφ̃〉 may thus be expressed as kxky∂x(A2) +

A2∂x(kxky). The first term represents the usual mechanism
for driving zonal flows through amplitude modulation. The
second term shows that the gradient of the radial wavenumber
(∂xkx), i.e. the phase curvature, may also drive the zonal flow,
even in the absence of inhomogeneous intensity. This latter
mechanism of zonal flow generation and its effect on the un-
derlying amplitude and flow structure of the DW-ZF system is
our primary focus in this paper. We pursue this end by taking
A as constant, hereafter.

We demonstrate zonal flow production through phase,
rather than amplitude, modulation, by the use of WKB. We
thus drop all terms of O(∇A) and higher, thus effectively lim-
iting the analysis to the case of homogeneous amplitude. Then
our system reduces to

0 = ∇
2
ψ χ̂(ψ)+2∇ψ · χ̂(∇ψ) (6)

0 = ∂tψ +(∇ψ)2
χ̂(ψ)− χ̂(∇2

ψ)+ρ
2
s 〈vy〉′′∂yψ+

〈vy〉∂yψ + v∗∂yψ (7)

1
ρ4

s Ω2
i

∂t〈vy〉= A2
∂

2
x ψ∂yψ +A2

∂xyψ∂xψ− µ

ρ4
s Ω2

i
〈vy〉 (8)

The residue of the amplitude evolution equation (6) acts as
a constraint on the system. The phase field and flow evolution
are given by Eqs. (7), (8). Zonal flow generation through
phase curvature can be now seen explicitly through the first
term on the right hand side of Eq. (8).

An important question is how to reconcile constant am-
plitude with energetics. In the course of DW-ZF energy ex-
change, drift wave instabilities lead to the formation of eddies,
which drive transport and flows. The flows then feedback on
the instability, shearing the eddies and so causing refraction
and changes in kr, in the process18–20. This ultimately leads
to the transfer of eddy energy to the flow. Specifically, the
fluctuation energy evolves according to21:

d〈ε〉
dt

=
1
2
〈∂t(φ̃

2 +ρ
2
s (∇φ̃)2)〉

= 〈φ̃ [∂t φ̃ −ρ
2
s ∂t∇

2
φ̃ ]〉

(9)

where we have performed an integration by parts (assuming
boundary terms vanish) to obtain Eqn (9). Substituting into
the Hasegawa-Mima equation (1) and exploiting periodicity

in ŷ, we see that

d〈ε〉
dt

= 〈vy〉〈φ̃ ∂y∇
2
φ̃〉

=−〈vy〉A2〈∂x(∂xψ ∂yψ)〉
= −〈vy〉A2〈∂ 2

x ψ ∂yψ〉

(10)

Here, we consider a closed system, so we may drop the
boundary terms for the evolution of the fluctuation energy.
Note that fluctuation energy evolves due to phase-curvature-
driven Reynolds force, even for the case of constant ampli-
tude.

The energy for the flow evolves as

d〈EZF〉
dt

=
1

ρ4
s Ω2

i
〈vy〉∂t〈vy〉

= 〈vy〉A2〈∂ 2
x ψ ∂yψ〉− µ

ρ4
s Ω2

i
〈vy〉2

(11)

The evolution of the total energy of the DW-ZF system, then,
is given by

d〈Etot〉
dt

=
d〈ε〉
dt

+
d〈EZF〉

dt

=− µ

ρ4
s Ω2

i
〈vy〉2

(12)

We see that energy is thus conserved in the overall DW-ZF
system at constant A, up to damping and boundary flux. In
this model with constant intensity, ∇kr is responsible for the
energy exchange between the fluctuation and the flow. Re-
fraction here works via phase curvature (i.e. ∂ 2

x ψ 6= 0). Sites
of steepest gradient in the radial wavenumber contribute the
most energy flux (to large scale), indicating that these sites
are where flow generation is most active.

To determine the evolution of the mean phase field and flow,
we now proceed to eliminate the fast variation of the phase.
Specifically, we write the phase as an initial monochromatic
plane wave, with fast dependence on ŷ, plus a slower function
Θ, such that

ψ = kyy−ωkyt +Θ(x,y, t) (13)

with an eigenfrequency which varies slowly (on mesoscales)
in space and time:

ωky =
v∗ky

1+ρ2
s k2

y
+ ky〈vy〉 (14)

By construction, then, ky � ∂yΘ and ωky � ∂tΘ. Fur-
thermore, Θ varies in x such that ρ2

s 〈vy〉∂y∇2Θ ' 0 and
ρ2

s ∂t∇
2Θ ' ρ2

s ∂t∂xxΘ. The evolution of the phase (7) then
follows as:

∂t(Θ−ρ
2
s ∂

2
x Θ) =ρ

2
s

v∗ky

1+ρ2
s k2

y
(∂xΘ)2−ρ

2
s ky〈vy〉′′ (15)
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The second term on the left hand side represents the dispersion
of the phase. The first term on the right hand side represents
nonlinear phase interaction due to phase steepening. The last
term describes frequency detuning by the flow curvature. It is
evident that the phase dynamics are governed by the compe-
tition between the nonlinear evolution of the phase, through
gradient steepening (∂xΘ)2 and dispersion ∂t∂

2
x Θ. Such a bal-

ance is characteristic of solitary wave formation22.
Likewise, when the flow equation (8) is averaged, the sec-

ond term on its right hand side, ∂xyψ ∂xψ , can be dropped.
The flow evolution equation then reduces to:

1
ρ4

s Ω2
i

∂t〈vy〉= A2ky∂
2
x Θ− µ

ρ4
s Ω2

i
〈vy〉 (16)

Thus, our reduced phase-flow system is described by equa-
tions (15) and (16).

IV. PHASE SLIPS AND SHEAR LAYERS

For simplicity, and to obtain an analytic solution to the re-
duced phase-flow system, we consider the case of vanishing
damping. As will be seen below, taking µ → 0 leads us to
propagating zonal shear layer solutions, which balance ZF
growth with the movement of the shear layer through the sys-
tem.

In light of the above discussion, we look for solutions in the
moving frame propagating at speed c, i.e. of the form Θ(x−
ct). We thus transform the temporal derivative according to
∂t →−c∂x. Then, Eq. 16 can be directly integrated to get

〈vy〉=−
A2ky

c
∂xΘ+

α

c
(17)

where α is an integration constant, and ρ2
s Ωi has been ab-

sorbed into A for simplicity of notation. It is evident that the
flow structure, scale, and evolution are thus set by the struc-
ture of the phase gradient.

Plugging Eqn (17) back into this back into Eqn (15), then
multiplying both sides of the equation by Θ′′, and integrating
once gives:

−c2

2
f 2 +

c2ρ2
s −ρ2

s k2
yA2

2
( f ′)2 =

1
3

ρ2
s v∗kyc

1+ρ2
s k2

y
f 3 +β (18)

Here f ≡ Θ′ and β is an integration constant, as well. Thus,
the equation for the phase gradient is given by

x+ x0 =

∫
d f

Q( f ,c)
1
2

(19)

where

Q( f ,c)≡ ( f ′)2 =
2

ρ2
s

1
c2− k2

yA2

(
1
3

ρ2
s v∗kyc

1+ρ2
s k2

y
f 3 +

c2

2
f 2 +β

)
(20)

FIG. 1. Top (a): Zonal flow evolution through the phase curvature.
Bottom (b): Zonal shear flow pulses induced by the slip.

Since kyA has units of velocity, we recognize it as the radial
E×B velocity fluctuation.

For β = 0, (19) admits the exact solution:

Θ
′ =−

3c(1+ρ2
s k2

y)

2ρ2
s v∗ky

sech2
(

c
2ρs

x+ x0√
c2− k2

yA2

)
(21)

The possible resonance at c = kyA arises from the bal-
ance between dispersion and the flow curvature. The waves
sharpen approaching this limit. Thus, the flow there is more
strongly driven. The solution suggests a critical Mach num-
ber Mc = c/kyA, with the speed-amplitude relation M > 1.
Fig. (1a) gives a sketch of a propagating localized shear
layer. Note the dipolar shear, and the pattern propagation at
c. Fig. (1b) shows the flow 〈vy(x)〉. This has the form of a
localized jet.

The spatio-temporal structure of the phase gradient sug-
gests a dynamic realization of the concept of a phase slip6.
Indeed, integrating Eqn (21) once more, we get:

Θ =−
3(1+ρ2

s k2
y)
√

c2− k2
yA2

ρskyv∗
tanh

(
c

2ρs

x+ x0√
c2− k2

yA2

)
+Θ0

(22)

Eqn (22), which predicts a tanh profile for the phase, im-
plies that at sites of intense zonal shearing, the phase ‘slips’,
initiating refraction and zonal flow generation through phase
curvature (Fig. 1). Figure (2) gives a sketch of a ‘phase bore
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FIG. 2. Phase bore or slip propagating across the system.

’pattern, as suggested by Eqn (22). Note phase variation is
isolated in a narrow layer, corresponding to the position of the
velocity jet. The bore propagates across the system. Since
the DW fluctuation is invariant under ψ→−ψ , the phase can
slip in both directions. As M → 1, the width of the pattern
decreases and thus the slip sharpens. However, the amplitude
of the slip is more strongly attenuated approaching resonance.

The analytic solution for the phase gradient (21) defines
the structure and scales of the zonal flow. The magnitude of
the emergent shear flow pulse is set by 3A2(1+ρ2

s k2
y)/2ρ2

s v∗

for α = 0. The characteristic width of the pulse is given by
2ρs

√
c2− k2

yA2/c. The pulse is sharper near resonance.
We now address the stability of the phase and flow solu-

tions by considering a ZF-based state (i.e. no streamers). In
this state, we restrict the amplitude to be a function only of
x. Thus, along the surfaces of constant amplitude at a partic-
ular constant radius, the dynamics of the phase are set by kyy.
Thus, by transforming ∇A → ∂xA, our coupled amplitude-
phase-flow equations (3,4,5) reduce to

∂t

[(
1+ρ

2
s [(∂xΘ)2 + k2

y ]
)

A−ρ
2
s ∂

2
x A
]
=

v∗ρ2
s ky

1+ρ2
s k2

y
(2∂xΘ∂xA+

A∂
2
x Θ)

(23)

A∂tΘ−ρ
2
s ∂t

[
(A∂

2
x Θ)+2(∂xΘ∂xA)

]
=

v∗ρ2
s ky

1+ρ2
s k2

y
(A(∂xΘ)2−

∂
2
x A) −ρ

2
s kyA〈vy〉′′

(24)

1
ρ4

s Ω2
i

∂t〈vy〉=kyA2
∂

2
x Θ+2kyA(∂xΘ∂xA)− µ

ρ4
s Ω2

i
〈vy〉 (25)

We consider a small radially varying perturbation of the ho-
mogeneous amplitude state while linearizing, i.e.:

A = A0 + εA1(x, t)

Likewise, the flow and phase are perturbed to the same order:

〈vy〉= 〈vy〉0(x, t)+ ε〈vy(x, t)〉1

Θ = Θ0(x, t)+ ε Θ1(x, t)

Here our base states for the flow and phase are given by Eqs.
(17) and (22), respectively. Since the base states are traveling
waves, we transform the above equations from the stationary
frame x to the moving frame x− ct for perturbative analysis.
Thus, we take ∂x→ ∂x and ∂t →−c∂x +∂t .

A numerical calculation is used to demonstrate the sta-
bility of the perturbations (Fig. 3). Parameters are cho-
sen to correspond to those of CSDX (Controlled Shear De-
correlation Experiment) plasma23, with vanishing damping
and base amplitude A0 = 1. Here, c = 21, ky = 20. Spa-
tial discretization is employed through finite-difference meth-
ods. The amplitude perturbation is initialized at 10−5 at x = 0,
with a Dirichlet boundary condition imposed at the right end-
point (A1(x f , t) = 0) and Neumann boundary conditions at
both endpoints (∂xA1|x=0,x f = 0). Here, x f corresponds to
the radial edge of the plasma. We impose both Dirichlet
(Θ1(x f , t) = 〈vy(x f , t)〉1 = 0) and Neumann boundary con-
ditions (∂xΘ1|x=0,x f = ∂x〈vy〉1|x=0 = 0) on the phase and
flow perturbations without initial perturbations (Θ1(x,0) =
〈vy(x,0)〉1 = 0). Note that after a short period of transient
growth, the perturbations decay to zero, indicating stability.

V. DISCUSSION AND CONCLUSION

In this paper, we have studied how phase dynamics — and,
in particular, phase curvature— affect zonal flow evolution.
To isolate the effects of phase curvature, we start from a base
state with constant drift wave amplitude. This eliminates in-
tensity profile effects. The principal results of this paper are
as follows.

i.) We derived a coupled system of equations for wave
phase, amplitude, and zonal flow. This system is simplified
for a single wave, with spatio-temporally constant amplitude.
This isolates the effect of the phase curvature on the flow gen-
eration process.

ii.) The quasilinear phase-flow equations are solved analyt-
ically. Radially propagating solutions of the form Θ(x− ct),
〈vy(x−ct)〉 are obtained. These novel examples of zonal shear
layer structures are formed by the balance of phase steepening
and dispersion, and so resemble collisionless phase shocks or
solitons.

iii.) The results realize the prediction that phase curvature
can generate shear flows which regulate drift wave turbulence.

iv.) The shear layers induce jumps or ‘slips’ in the phase.
These resemble propagating bores. Thus, stress-driven shear
layers constitute a concrete realization of the concept of a
phase slip.

v.) We find that the phase-flow solutions obtained here are
linearly stable.

vi.) The implications of the results obtained for this simple
model for phase turbulence are discussed in detail.

More generally, we see the cross phase cosΦ = 〈ṽr ·
ṽθ 〉/|ṽr||ṽθ | is critical to evolution of the Reynolds stress and
thus is a key to self-regulation, as it includes the phase cur-
vature effect. In particular, non-zero phase derivative, ∂xψ =
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FIG. 3. Left-to-right shows amplitude, phase, and flow perturbations in x and t. Note that a finite amplitude state is initialized but, after
transient growth, decays to zero, indicating the structure is stable.

kx 6= 0, is required for a non-zero Reynolds stress. In general,
anisotropy of ṽx, ṽy is required for non-zero Reynolds stress.
For negligible amplitude inhomogeneity, radial variation of
kx (i.e. phase curvature ∂ 2

x ψ 6= 0) is required for a non-zero
Reynolds force. This can directly drive zonal flow evolution
through kr inhomogeneity, even in the absence of intensity in-
homogeneity. Note that either amplitude inhomogeneity or
kx inhomogeneity is required for a finite Reynolds force, as
shown in Fig. (4). Phase curvature initiates a new feedback
loop between phase and flow, causing the generation of non-
linear structures in the phase field — in particular, the birth of
a stable, propagating phase bore. The bore induces a burst of
intense evolution of kr, causing a surge of energy transfer from
drift waves to the flows. This burst in turn generates a prop-
agating shear flow pulse. Both amplitude inhomogeneity and
phase inhomogeneity contribute to the Reynolds force, which
ultimately drives zonal flow. The two inhomogeneities each
define a feedback channel connecting fluctuations and flow
(Fig. 4). This channel is complementary to the well known
amplitude modulation channel.

This paper does not address the state of phase turbulence,
where many interacting modes produce an ensemble of phase
bores, associated with shear layers. The system presented
here can be generalized straightforwardly to realize a quasilin-
ear theory of phase-flow turbulence, in which the slow phase
Θky(x, t) and the flow 〈vy(x, t)〉) fields evolve. In this re-
stricted model, the intensities of the various modes (∼ |Aky |2)
are constant. Of course, the total phases ψky are given by
ψky = kyy−ωkyt +Θky(x, t). The quasilinear equations then
become:

∂t(Θky −ρ
2
s ∂

2
x Θky) =ρ

2
s

v∗ky

1+ρ2
s k2

y
(∂xΘky)

2−ρ
2
s ky〈vy〉′′

(26)

1
ρ4

s Ω2
i

∂t〈vy〉= ∑
ky

|Aky |
2ky∂

2
x Θky −

µ

ρ4
s Ω2

i
〈vy〉 (27)

Thus, the flow field is produced by a sum of the phase
curvatures, weighted by the modal intensities |Aky |2. Self-
interactions can drive resonant contributions to the phase

FIG. 4. Flow chart illustrating mechanisms of zonal flow generation
and its feedback on the drift wave fluctuations, via either amplitude
or phase inhomogeneity.

equation (via 〈vy〉′′), as discussed above. Interactions with
other modes produce non-resonant phase perturbations. Thus
in this model, the state of phase turbulence will consist of an
ensemble of propagating phase slips or bores. Each bore is as-
sociated with a propagating zonal shear layer. Of course, the
phase bores will also feedback on instability via the effects of
the associated nonlinear frequency shift of the deviation of the
wave frequency from the diamagnetic frequency (i.e. ω−ω∗e ).

To progress beyond mean field theory, the effects of mode-
mode interaction on phase evolution must be addressed. One
must consider the evolution of amplitude, phase, and flow, in-
cluding instability processes. This requires extension to the
Hasegawa-Wakatani model25. These analyses are beyond the
scope of this paper. Other questions for future study include
phase evolution in streamers, Kelvin-Helmholtz instabilities
of the flow26, as well as boundary effects.

Finally, we suggest that a phase bore could be the leading
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edge of an avalanche27–30. A phase slip which increases
ω∗ −ω would trigger a burst of stronger transport, and so
initiate a propagating mixing and relaxation event — in other
words, an avalanche.

VI. ACKNOWLEDGEMENTS

We thank Zhibin Guo for stimulating and insightful con-
versations on phase dynamics, and Guilhem Dif-Pradalier for
interesting conversations on bores and avalanches. We also
thank participants in the 2017 and 2019 Festival de Théorie
for stimulating discussions. This research was supported by
the U.S. Department of Energy, Office of Science, Office
of Fusion Energy Sciences under Award Number DE-FG02-
04ER54738.
1J. W. Conner and H. R. Wilson, Plasma Physics and Controlled Fusion 36,
719 (1994).

2R. Sagdeev and A. Galeev, Nonlinear plasma theory, Frontiers in physics
(W. A. Benjamin, 1969).

3H. Biglari, P. H. Diamond, and P. W. Terry, Physics of Fluids B: Plasma
Physics 2, 1 (1990).

4Z. B. Guo and P. H. Diamond, Phys. Rev. Lett. 114, 145002 (2015).
5T. H. Dupree, The Physics of Fluids 9, 1773 (1966).
6A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Univer-
sal Concept in Nonlinear Sciences, Cambridge Nonlinear Science Series
(Cambridge University Press, 2001).

7P. Manneville, in Dissipative Structures and Weak Turbulence (Academic
Press, Boston, 1990) pp. 369 – 418.

8D. Y. Manin, Physics of Fluids A: Fluid Dynamics 4, 1715 (1992).
9R. Adler, Proceedings of the IRE 34, 351 (1946).

10P. H. Diamond, S.-I. Itoh, K. Itoh, and T. S. Hahm, Plasma Physics and
Controlled Fusion 47, R35 (2005).

11Z. B. Guo and P. H. Diamond, Phys. Rev. Lett. 117, 125002 (2016).
12A. Hasegawa and K. Mima, The Physics of Fluids 21, 87 (1978).
13R. Sagdeev, Reviews of Plasma Physics 4, 23 (1966).
14A. Hasegawa, C. G. Maclennan, and Y. Kodama, The Physics of Fluids 22,

2122 (1979).
15R. Sagdeev, V. Shapiro, and V. Shevchenko, Fizika Plazmy 4 (1978).
16Ö. D. Gürcan and P. H. Diamond, Journal of Physics A: Mathematical and

Theoretical 48, 293001 (2015).
17L. Chen, Z. Lin, and R. White, Physics of Plasmas 7, 3129 (2000).
18P. H. Diamond, Y.-M. Liang, B. A. Carreras, and P. W. Terry, Phys. Rev.

Lett. 72, 2565 (1994).
19P. Manz, M. Ramisch, and U. Stroth, Phys. Rev. Lett. 103, 165004 (2009).
20Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and R. B. White, Science 281,

1835 (1998).
21P. H. Diamond, A. Hasegawa, and K. Mima, Plasma Physics and Con-

trolled Fusion 53, 124001 (2011).
22E. Lifshitz and L. Pitaevskii, in Physical Kinetics, edited by E. Lifshitz and

L. Pitaevskii (Butterworth-Heinemann, Oxford, 1981) pp. 115 – 167.
23S. C. Thakur, C. Brandt, L. Cui, J. J. Gosselin, A. D. Light, and G. R.

Tynan, Plasma Sources Science and Technology 23, 044006 (2014).
24S. Champeaux and P. Diamond, Physics Letters A 288, 214 (2001).
25M. Wakatani and A. Hasegawa, The Physics of Fluids 27, 611 (1984).
26E.-j. Kim and P. H. Diamond, Physics of Plasmas 10, 1698 (2003).
27P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987).
28P. H. Diamond and T. S. Hahm, Physics of Plasmas 2, 3640 (1995).
29T. S. Hahm and P. H. Diamond, Journal of the Korean Physical Society 73,

747 (2018).
30G. Dif-Pradalier, V. Grandgirard, Y. Sarazin, X. Garbet, and P. Ghendrih,

Phys. Rev. Lett. 103, 065002 (2009).


