Transport Physics of the Density Limit

P.H. Diamond^{1,2}, T. Long², R. Ke², M. Malkov¹

¹⁾ U.C. San Diego, USA
 ²⁾ SWIP, China

TTF 2019

This research was supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-04ER54738.

Outline

- Density limit $(\bar{n}/\bar{n}_G \rightarrow 1)$ as a transport phenomenon (mostly L-mode)
- Recent experimental studies of the density limit → <u>shear layer</u>
 <u>collapse</u>
- Theory of shear layer collapse

Thesis: For hydrodynamic electrons, drift wave turbulence cannot selfregulate via flows

- Physics of current dependence
- Possible Experiments

- Density Limit: Edge Transport is Key
 - 'Disruptive' scenarios <u>secondary</u> outcome, largely consequence of <u>edge</u>
 <u>cooling</u>
 - \bar{n}_g reflects fundamental limit imposed by <u>particle transport</u> (c.f. Greenwald)

Indication

- Density decays non-disruptively after pellet injection
- \bar{n} asymptote scales with I_p
- Density limit enforced by transport-

induced relaxation.

Synthesis of the Fluctuation Experiments

• Shear layer collapse and turbulence and D (particle transport) rise as $\frac{n}{\bar{n}_G} \rightarrow 1$.

• ZF collapse as
$$\alpha = \frac{k_{||}^2 v_{th}^2}{|\omega| v_e}$$
 drops from $\alpha > 1$ to $\alpha < 1$.

- Degradation in particle confinement at density limit in L-mode is due to breakdown of self-regulation by Z.F.
- Note that β in these experiments is too small for conventional Resistive Ballooning Modes (RBM) explanation.
- How reconcile all these with our understanding of drift wave-zonal flow physics?

See: Y. Xu, et al. NF 2011 Schmidt, Manz, et al. PRL 2017 Hong, et al. NF 2018

all present consistent picture

Key Parameter: Electron Adiabaticity

- Electron adiabaticity $\alpha = \frac{k_{||}^2 v_{th}^2}{|\omega| v_{ei}}$ emerges as an interesting local parameter. $\alpha \sim 3 \rightarrow 0.5$ during \overline{n} scan!
- Particle flux \uparrow and Reynolds power $P_{Re} = -\langle V_{\theta} \rangle \partial_r \langle \tilde{V}_r \tilde{V}_{\theta} \rangle \downarrow$ as α drops below unity.

Hong, et al. NF 2018

Step Back: Why Zonal Flows Ubiquitous?

• Direct proportionality of wave group velocity and wave energy density flux

to Reynolds stress $\leftarrow \rightarrow$ spectral correlation $\langle k_x k_y \rangle$

Outgoing waves generate a flow convergence! → Shear layer spin-up

But NOT for hydro limit:

•
$$\omega_r = \left[\frac{|\omega_{*e}|\hat{\alpha}|}{2k_{\perp}^2\rho_s^2}\right]^{1/2} \rightarrow \text{ for hydro regime of H-W}$$

• $V_{gr} = -\frac{2k_r\rho_s^2}{k_{\perp}^2\rho_s^2} \omega_r \quad \stackrel{?}{\leftarrow} \rightarrow \quad \langle \tilde{V}_r\tilde{V}_\theta \rangle = -\langle k_rk_\theta \rangle \quad \text{ direct link broken}$

 \rightarrow Energy, momentum flux no longer directly proportional

→ Eddy tilting ($\langle k_r k_\theta \rangle$) does not arise as direct consequence of causality

→ ZF generation <u>not</u> 'natural' outcome in hydro regime!

Scaling of transport fluxes with α

Plasma Response	Adiabatic (α >>1)	Hydrodynamic (α <<1)
Particle Flux Γ	$\Gamma_{\rm adia} \sim \frac{1}{\alpha}$	$\Gamma_{hydro} \sim \frac{1}{\sqrt{lpha}}$
Turbulent Viscosity χ	$\chi_{adia} \sim rac{1}{lpha}$	$\chi_{hydro} \sim \frac{1}{\sqrt{lpha}}$
Residual stress Π ^{res}	$\Pi^{res}_{adia} \sim -\frac{1}{\alpha}$	$\Pi^{res}{}_{ m hydro}$ ~- \sqrt{lpha}
$\frac{\Pi^{\rm res}}{\chi} = (\omega_{\rm ci} \nabla n) \times$	$(\frac{\alpha}{ \omega \star })^0$	$\left(\frac{\alpha}{ \omega \star }\right)^{1}$

 $\Gamma_n, \chi_y \uparrow \text{ and } \Pi^{\text{res}} \downarrow \text{ as the}$ electron response passes from adiabatic ($\alpha > 1$) to hydrodynamic ($\alpha < 1$)

- Mean vorticity gradient ∇u (i.e. ZF strength) becomes proportional to $\alpha \ll 1$ in the hydrodynamic limit.
- Weak ZF formation for $\alpha \ll 1 \rightarrow$ weak regulation of turbulence and enhancement of particle transport and turbulence.

Hajjar, Diamond, Malkov, PoP 2018

Also: Physics of Vorticity Gradient

- <u>Vorticity gradient</u> emerges as natural measure of shear flow strength, shear stabilization
- $\Pi = 0 \rightarrow \nabla u = \Pi^{res} / \chi_y$
- i.e. production vs. turbulent mixing
- What is physics of vorticity gradient?
 - i.e. "Rossby wave elasticity" inhibits wave breaking

- → <u>A jump in the flow shear over a scale length</u> / is equivalent to a <u>vorticity gradient</u> over that scale length
- \rightarrow Vorticity gradient precludes local alignment with shear

Physics of current scaling? – Desperately seeking Greenwald...

- Obvious? : How does shear layer collapse scenario connect to Greenwald scaling, $\bar{n} \sim I_p$?
- Consideration
 - RFP exhibits $\bar{n} \sim I_p$ scaling!
 - Stellarator different
- Scenario: Neoclassical dielectric $\leftarrow \rightarrow \rho_{\theta}$ as screening length

i.e. $\epsilon_{neo} = 1 + 4\pi\rho c^2 / B_{\theta}^2$

Screening/'effective inertia' of ZF weaker for higher I_p

Current scaling, cont'd

• For ZF driven by turbulence beats

$$\frac{e\hat{\phi}_{z}}{T} = \frac{beats(\vec{k},\vec{k}+\vec{q})}{\left(1+1.6\frac{q^{2}}{\varepsilon^{1/2}}\right)q_{r}^{2}\rho_{i}^{2}} \qquad \text{Increasing } I_{p} \text{ decreaes}}{\rho_{\theta} \text{ and offsets weaker ZF drive at high } I_{p}}$$

$$(\text{Rosenbluth, Hinton '97})$$

$$\sim \left(\frac{a^{p}}{T}\right)^{2}/\rho_{\theta}^{2} \qquad (\alpha < 1)$$

$$\sim \left(\frac{B_{\theta}^{2}}{n^{p}}\right)\left|\frac{c\hat{\phi}}{T}\right|^{2}$$

• In RFP, neoclassical contribution absent, but $\rho = \rho_{\theta}$ (i.e. B_{θ} sets gyro-radius)

Current scaling, cont'd

- Neoclassical response connects shear layer collapse physics to Greenwald scaling
- Need explore both modulation and beat drive, but trend is generic
- ➔ Does stellarator density limit scaling correlate with zonal flow screening scaling for that configuration?

Feedback loop for edge cooling

The Old Story / A Better Story

Modes, Glorious Modes / Self-Regulation and its Breakdown

- $\alpha_{MHD} = -\frac{Rq^2d\beta}{dr} \rightarrow \nabla P$ and ballooning drive to explain the phenomenon of density limit.
- Invokes yet another linear instability of RBM.
- What about density limit phenomenon in plasmas with a low β?

(Hajjar et al., PoP, 2018)

State	Electrons	Turbulence Regulation
Base State - <i>L</i> -mode	Adiabatic or Collisionless $\alpha > 1$	Secondary modes (ZFs and GAMs)
<i>H</i> -mode	Irrelevant	Mean ExB shear <i>∇</i> Pi/n
Degraded particle confinement (Density Limit)	Hydrodynamic $\alpha < 1$	None - ZF collapse due weak production for $\alpha < 1$

Secondary modes and states of particle confinement

<u>L-mode</u>: Turbulence is *regulated* by shear flows but not suppressed.

<u>H-mode:</u> *Mean ExB* shear $\leftrightarrow \nabla p_i$ suppresses turbulence and transport.

<u>Approaching Density Limit:</u> High levels of turbulence and particle transport, as shear flows collapse.

Partial Conclusions (L-mode)

- 'Density limit' is consequence of particle transport dynamics, edge cooling, etc. secondary.
- Degraded particle confinement <u>shear layer collapse</u>, breakdown of self-regulation
- Physics: Drop in shear flow production

Key parameter: $k_{\parallel}^2 V_{The}^2 / \omega v_e$ (adiabaticity)

- Penetration of turbulence spreading \rightarrow cooling front, MARFE etc.
- $\bar{n} \sim I_p$ scaling $\leftarrow \rightarrow$ Zonal Flow screening response !?

Analogue for stellarator?

Suggestions for Experiment

- Criticality $k_{\parallel}^2 V_{The}^2 / \omega v_e \rightarrow T_e^2 / n_e \text{ trade off}$
- <u>Scale</u> of shear layer collapse? ρ_{θ} ?
- Turbulence spreading penetration depth? influence length
- Perturbative experiments: (J-TEXT, planned)
 - SMBI probe of relaxation (with fluctuations)
 - ExB flow drive (Bias) \rightarrow enhance shear layer persistence beyond \bar{n}_{g} ?
 - RMP \rightarrow accelerate shear layer collapse?
- N.B. Turbulence/transport part of 'disruption studies'!

- Can edge biasing (ala' driven L \rightarrow H) sustain $\bar{n} > \bar{n}_g$ by driving shear layer?
- Is shear layer collapse hysteretic?

• Is shear layer collapse yet another case of a back-transition of transport bifurcation?

What of H-mode?

- H-mode density limit involves back-transition prior to \bar{n}_{g}
- Key HDL problem is high density back-transition
- I_{turb} in SOL exceeds that of pedestal

• Is HDL due

...

- Shear layer weakening
- Invasion of pedestal from SOL
- Coupled pedestal-SOL model in progress

General Conclusions

- Transport is fundamental to density limit. Cooling, etc.
 drive secondary phenomena.
- Shear layer collapse occurs as transport bifurcation from DW-ZF turbulence to convective cells,

approaching density limit.

 Greenwald scaling can result from neoclassical polarization. Support by U.S. Department of Energy under Award Number DE-FG02-04ER54738