Transport Physics of Density Limits

P.H. Diamond

U.C. San Diego, USA

PET 2019

This research was supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-04ER54738.

Collaborators:

Rameswar Singh, Rima Hajjar, Mischa Malkov,

Rongjie Hong, George Tynan

- UCSD

Ting Long, Rui Ke

- SWIP, China

Acknowledge: Martin Greenwald, Carlos Hidalgo

Outline

- Selected OV of density limit physics (L-mode)
 - Focus: role of particle transport
 - Emphasize: fluctuation studies $\leftarrow \rightarrow$ role of edge shear layer
- Theory of shear layer collapse
 - Shear flow production and its decline
 - Key: electron adiabaticity
- Desperately seeking Greenwald
 - What of current scaling?
 - Tokamak vs. RFP vs. Stellarator
- Thoughts for experiments

A Look at Density Limit Phenomenology

Density Limits: Some Basic Aspects

- Not a review!
- Greenwald density limit:

Constrains tokamak Operating Space

- Manifested on other devices
 - See especially <u>RFP</u> ($n \sim I_p$ scaling)

- Line averaged limit
- (Too) simple dependence!?
- Begs origin of *I_p* scaling?!
 Stellarators?
- Most fueling via edge → edge transport critical to n
 imits

- Argue: Edge Particle Transport is crucial
 - 'Disruptive' scenarios <u>secondary</u> outcome, largely consequence of <u>edge</u> <u>cooling</u>, following fueling vs. increased particle transport
 - \bar{n}_{g} reflects fundamental limit imposed by <u>particle transport</u>
- A Classic Experiment (Greenwald, et. al.)

- Density decays without disruption after shallow pellet injection
- \bar{n} asymptote scales with I_p
- Density limit enforced by transport-

induced relaxation

- Relaxation rate not studied

• More Evidence for Role of Edge Transport

- Post-pellet density decay time vs $\overline{J}/\overline{n}$.
- Increase in relaxation time near (usual)

limit: $\bar{J}/\bar{n} \sim 1+$

- Pellet in DIII-D beat \bar{n}_g
- Peaked profiles ← → enhanced core
 particle confinement (ITG turbulence
 reduced?)
- Reduced particle transport → impurity accumulation

(N.B. Deeper deposition)

Conventional Wisdom (Rogers + Drake '98, et seq.)

Reduced Fluid Simulation (no heat source)

- D+R on n-limit physics:
 - State of high $\nabla P, \beta$, cool electrons
 - DWT → resistive ballooning turbulence
 - Issue: Density limit vs beta limit??

$$\alpha_{MHD} = -Rq^2 d\beta/dr$$

 $\leftrightarrow \forall P \rightarrow ballooning drive$

$$\alpha_d = \rho_S C_s t_0 / L_n L_0$$

$$t_0 = \frac{(RL_n)^{\frac{1}{2}}}{c_S}$$

$$L_0 = 2\pi q \left(\frac{\nu_e R \rho_s}{2\Omega_e}\right)^{1/2}$$

→ Hybrid of drift frequency and collisionality

Density limit ←→ **Fluctuation Structure**

C-Mod profiles, Greenwald et al, 2002, PoP

- <u>Average</u> plasma density increases as a result of edge fueling → edge transport crucial to density limit.
- As *n* increases, high ⊥ transport region extends inward and fluctuation activity increases.
- Turbulence levels increase and perpendicular particle transport increases as $n/n_G \rightarrow 1$.

Recent Experiments - 1

(Y. Xu et al., NF, 2011)

<n_>=1.5x10¹⁹m⁻³ 0.8 0.6 0.4 <n_>=3.0x10 0.2 رک ک 0.0 -0.2-0.4-0.6-1000 100 200 -200 (a) lag (µs) 0.8 с×х 0.4 0.2 3.5 4.5 4 Line average density (10¹⁹ m⁻³) (b)

MAX

LRC vs \bar{n}

- Decrease in maximum correlation value of LRC (i.e. ZF strength) as line averaged density \bar{n} increases at the edge (r/a=0.95) in both **TEXTOR** and **TJ-II**.
- At high density ($\langle n_e \rangle > 2 \times 10^{19} \, m^{-3}$), the ٠ LRC (also associated with GAMs) drops rapidly with increasing density.
- The reduction in LRC due to increasing density is also accompanied by a reduction in edge mean radial electric field (Relation to ZFs).

Is density limit related to edge shear decay?

Recent Experiments - 2

(Schmid, Mans et al., PRL, 2017) – stellarator experiment

Eddy Tilt (a) С 1.00 $\alpha = -0.23 \pm 0.02$ $_{\rm ZF}/P_{\rm total}$ 0.10 0.01 0.1 1.0 10.0 \mathbf{C} P_{ZF}/P_{tot}

- Experimental verification of the importance of collisionality for large-scale structure formation in TJ-K.
- Analysis of the Reynolds stress shows a decrease in coupling between density and potential for increasing collisionality → hinders zonal flow drive (Bispectral study)
- Decrease of the zonal flow contribution to the total turbulent spectrum with collisionality *C*.
- a) Increase in decoupling between density (red) and potential (blue) coupling with collisionality C.
- b) Increase in ZF contribution to the spectrum in the adiabatic limit $(C \rightarrow 0)$
- $C \Leftrightarrow a diabaticity k_{\parallel}^2 V_{th}^2 / \omega v$

Recent Studies, Hong, et. al. (NF 2018)

- Joint pdf of $\tilde{V}_r, \tilde{V}_\theta$ for 3 densities, $\bar{n} \to n_g$
- $r r_{sep} = -1cm$
- Note:
 - Tilt lost, symmetry restored as $\overline{n} \rightarrow \overline{n}_g \rightarrow Weakened$ shear flow
 - Consistent with drop in P_{Re}

production by Reynolds stress

Key Parameter: Electron Adiabaticity

Electron adiabaticity $\alpha = \frac{k_{||}^2 v_{th}^2}{|\omega| v_{ei}}$ emerges as interesting local parameter. $\alpha \sim 3 \rightarrow 0.5$ during \bar{n} scan!

c)

 $\overline{2}$

Particle flux \uparrow and Reynolds power $P_{Re} =$ $-\langle V_{\theta} \rangle \partial_r \langle \tilde{V}_r \tilde{V}_{\theta} \rangle \downarrow$ as α drops below unity.

Synthesis of the Experiments

• Shear layer collapse and turbulence and D (particle transport) rise as $\frac{\overline{n}}{\overline{n}_c} \rightarrow 1$.

 \rightarrow Key microphysics of density limit !?

• ZF collapse as $\alpha = \frac{k_{||}^2 v_{th}^2}{|\omega| v_e}$ drops from $\alpha > 1$ to $\alpha < 1$.

 \rightarrow Effect on production

- Degradation in particle confinement at density limit in L-mode is due to breakdown of self-regulation by zonal flow
- Note that β in these experiments is too small for conventional Resistive Ballooning Modes (RBM) explanation.

The Key Questions

- What physics governs shear layer collapse (or maintanance) at high density?
 - \Leftrightarrow 'Inverse process' of familar L \rightarrow H transition !?

i.e.
$$L \rightarrow H$$
: { shear layer \rightarrow barrier
turbulence
Density Limit: strong \leftarrow { shear layer,
turbulence turbulence

→ In particular, what is the fate of shear flow for

hydrodynamic electrons: $k_{\parallel}^2 V_{th}^2 / \omega \nu < 1$?

Simulations !?

• Extensive studies of Hasegawa-Wakatani system

```
for k_{\parallel}^2 V_{the}^2 / \omega \nu < 1, > 1 regimes.
```

i.e. Numata, et al '07 Gamargo, et al '95 Ghatous and Gurcan '15

- All note weakening or collapse of ordered shear flow in hydrodynamic regime $(k_{\parallel}^2 V_{the}^2 / \omega v < 1)$, which resembles 2D fluid turbulence.
- Physics of collapse left un-addressed, as adiabatic regime $(k_{\parallel}^2 V_{the}^2 \omega / \nu > 1)$ dynamics of primary interest

A Theory of Shear Layer Collapse

A Simple, Generic Model

For neoclassical mean field evolution

 $\rho_i^2 \to \rho_{eff}^2 \to \rho_{\theta i}^2$

Dispersion Relation for $\alpha < 1$ *and* $\alpha > 1$

key: $\alpha < 1 \rightarrow$ drift wave converts to convective cell

Step Back: Zonal Flows Ubiquitous! Why?

• Direct proportionality of wave group velocity and wave energy density flux to Reynolds stress $\leftarrow \rightarrow$ spectral correlation $\langle k_x k_y \rangle$

But NOT for hydro convective cells:

•
$$\omega_r = \left[\frac{|\omega_{*e}|\hat{\alpha}|}{2k_{\perp}^2\rho_s^2}\right]^{1/2} \rightarrow \text{for convective cell of H-W}$$

- $V_{gr} = -\frac{2k_r \rho_s^2}{k_\perp^2 \rho_s^2} \omega_r$ $\leftarrow ?? \rightarrow \langle \tilde{V}_r \tilde{V}_\theta \rangle = -\langle k_r k_\theta \rangle$; direct link broken!
- → Energy flux NOT simply proportional to Momentum flux →
- → Eddy tilting ($\langle k_r k_\theta \rangle$) does <u>not</u> arise as direct consequence of causality
- → ZF generation <u>not</u> 'natural' outcome in hydro regime!
- ➔ Physical picture of shear flow collapse emerges

Reduced Model 🗇 Demonstrate Understanding

- Utilize models for <u>real space</u> structure to address shear layer
 - e.g. { Balmforth, et. al. Ashourvan, P.D. Outgrowth of staircase studies

See also: J. Li, P.D. '2018 (PoP) – saturation for friction \rightarrow 0

- Exploit PV conservation: (PV $\leftarrow \rightarrow$ Potential Vorticity)
 - $q = \ln n ∇^2 φ$ → conserved PV ←→ equivalent to phase space density
- $\begin{array}{ll} \quad \tilde{q} = \tilde{n} \nabla^2 \tilde{\phi} & \langle n \rangle \text{ mean density} \\ \langle \nabla^2 \phi \rangle \text{ mean vorticity} \end{pmatrix} \text{ define mean PV} \\ \mathbf{So} & \langle \tilde{q}^2 \rangle = \varepsilon \text{ fluctuation potential enstrophy} \end{array}$
- Natural description: $\langle n \rangle$, $\langle \nabla^2 \phi \rangle$, $\langle \tilde{q}^2 \rangle = \varepsilon$ ε = fluctuation P.E.

Reduced Model, cont'd

 $\partial_t n = -\partial_x \Gamma_n + D_0 \nabla_x^2 n$

 $\partial_t u = -\partial_r \Pi + \mu_0 \nabla_r^2 u$

$$l_{mix} = \frac{l_0}{\left(1 + \frac{(l_0 \nabla u)^2}{\varepsilon}\right)^{\delta}} \rightarrow l_0$$

N.B.: Encompasses 'predator-prey' model

 $\partial_t \varepsilon + \partial_x \Gamma_{\varepsilon} = -(\Gamma_n - \Pi)(\partial_x n - \partial_x u) - \varepsilon^{\frac{3}{2}} + P$

• Fluxes:

 $\Gamma_n \rightarrow \text{Particle flux } \langle \tilde{V}_x \tilde{n} \rangle$

 $\Pi \rightarrow \text{Vorticity flux } \langle \tilde{V}_x \nabla^2 \tilde{\phi} \rangle = -\partial_x \langle \tilde{V}_x \tilde{V}_y \rangle \text{ (Taylor, 1915)}$

Reynolds Force

 $\Gamma_{\varepsilon} \rightarrow$ turbulence spreading, $\langle \tilde{V}_{\chi} \tilde{\varepsilon} \rangle \rightarrow$ triad interactions

Expression for Transport Fluxes:

 $\rightarrow \Gamma_{\varepsilon} = -l_{mix}^2 \sqrt{\varepsilon} \, \partial_x \varepsilon$

$$\rightarrow \Gamma_{n} = -D \ \partial_{x} n = -\frac{(\hat{\alpha} + |\gamma_{m}|)}{|\omega + i\hat{\alpha}|^{2}} \frac{d \ln n}{dx} \langle \delta v_{x}^{2} \rangle \longrightarrow \text{Diffusive Flux}$$

$$\rightarrow \Pi = -\chi_{y} \ \partial_{x} u + \Pi^{res} \qquad (\text{Physics of vorticity gradient t.b.d.})$$

$$\text{Shear relaxation by turbulent} \qquad \text{viscosity} \qquad \text{Production and acceleration of flow by } \nabla n$$

$$\chi_{y} = \frac{|\gamma_{m}| \langle \delta v_{x}^{2} \rangle}{|\omega|^{2}} \qquad \Pi^{res} = \frac{k_{\theta} \rho_{s} c_{s} \omega_{ci} \hat{\alpha} \left[(\omega^{r})^{2} (\omega^{*} - \omega^{r}) - |\gamma_{m}|^{2} (\omega^{r} + \omega^{*}) - \omega^{*} \hat{\alpha} |\gamma_{m}| \right]}{|\omega|^{2} \times |\omega + i\hat{\alpha}|^{2}} \langle \tilde{\phi}^{2} \rangle$$

Turbulence Spreading

Clear dependence of D, χ_y, Π^{res} on $|\omega|$ and $\hat{\alpha}$

Scaling of transport fluxes with α (adiabaticity parameter)

Plasma Response	Adiabatic (α >>1)	Hydrodynamic (α <<1)	Γ_n, γ
Particle Flux Γ	$\Gamma_{\rm adia} \sim \frac{1}{\alpha}$	$\Gamma_{hydro} \sim \frac{1}{\sqrt{\alpha}}$	elec fror
Turbulent Viscosity χ	$\chi_{adia} \sim \frac{1}{\alpha}$	$\chi_{hydro} \sim rac{1}{\sqrt{lpha}}$	hyd
Residual stress Π ^{res}	$\Pi^{res}_{adia} \sim -\frac{1}{\alpha}$	Π^{res}_{hydro} ~- $\sqrt{\alpha}$	α <
$\frac{\Pi^{\text{res}}}{\chi} = \text{Vorticity Gradient}$	α^0	α^1	pro

 $\Gamma_n, \chi_y \uparrow \text{ and } \Pi^{\text{res}} \downarrow \text{ as the}$ electron response passes from adiabatic ($\alpha > 1$) to hydrodynamic ($\alpha < 1$) $\alpha < 1 \rightarrow \underline{\text{weak flow}}$ production

- Mean vorticity gradient ∇u (i.e. ZF strength) proportional to $\alpha \ll 1$ for convective cells.
- Weak ZF formation for $\alpha \ll 1 \rightarrow$ weak regulation of turbulence and enhancement of particle transport and turbulence.

Some Theoretical Matters

Physics of Vorticity Gradient ?!

- ∇u , not flow shear, is natural flow order parameter
- [Jump in flow shear, over scale l] = [∇u , over scale l]
- Vorticity gradient prevents local alignment of eddy or mode with shear
- $\Pi = 0 \rightarrow \nabla u \sim \Pi^{res} / x_y$
- Standard interpretation: Enhanced 'drift wave elasticity' → ∇u converts turbulence to waves, so reducing mixing.

ZF Collapse $\leftarrow \rightarrow$ PV Conservation and PV Mixing? How reconcile?

Rossby waves:

Ω

 $\mathbf{
u}$

Density

- $PV = \nabla^2 \phi + \beta y$ is conserved from θ_1 to θ_2 .
- Total vorticity $2\vec{\Omega} + \vec{\omega}$ frozen in \rightarrow Change in mean vorticity Ω leads to change in local vorticity $\omega \rightarrow$ Flow generation (Taylor's ID)

Drift waves:

Radius

- In HW, $q = \ln n \nabla^2 \phi = \ln n_0 + h + \tilde{\phi} \nabla^2 \phi$ conserved along the line of density gradient.
- Change in density from position 1 to position
 2→ change in vorticity → Flow generation (Taylor ID)

Quantitatively

- Total PV flux $\Gamma_q = \langle \tilde{v}_x h \rangle \rho_s^2 \langle \tilde{v}_x \nabla^2 \phi \rangle$
- <u>Adiabatic limit $\alpha \gg 1$:</u> +Particle flux and vorticity flux are <u>tightly</u> <u>coupled</u> (both prop. to $1/\alpha$)
- <u>Hydrodynamic limit α ≪ 1 :</u>
 Particle flux proportional to 1/√α.
 Residual vorticity flux proportional to √α.
- PV mixing still possible without ZF formation → <u>Particles</u> carry PV flux
- Branching ratio changes with α !

Some Pragmatic Matters

The Big Picture

A Developing Story

From Linear Zoology to Self-Regulation and its Breakdown

- $\alpha_{MHD} = -\frac{Rq^2d\beta}{dr} \rightarrow \nabla P$ and ballooning drive to explain the phenomenon of density limit.
- Invokes yet another linear instability of RBM.
- What about density limit phenomenon in plasmas with a low β?

State	Electrons	Turbulence Regulation
Base State - L -mode	Adiabatic or Collisionless $\alpha > 1$	Secondary modes (ZFs and GAMs)
<i>H</i> -mode	Irrelevant	Mean ExB shear <i>V</i> Pi/n
Degraded particle confinement (Density Limit)	Hydrodynamic $\alpha < 1$	None - ZF collapse due weak production for $\alpha < 1$

(Hajjar et al., PoP, 2018)

Secondary modes and states of particle confinement

<u>L-mode</u>: Turbulence is *regulated* by shear flows, but not suppressed.

<u>H-mode</u>: *Mean ExB* shear $\leftrightarrow \nabla p_i$ suppresses turbulence and transport.

<u>Approaching Density Limit:</u> High levels of turbulence and particle transport, as shear flows collapse.

i.e. Shear Flow: Density Limit Weak (none) > < L-mode Modest > < H-mode Strong Mean

Partial Conclusions (L-mode)

- 'Density limit' is consequence of particle transport dynamics, edge cooling, etc. secondary.
- Degraded particle confinement <u>shear layer collapse</u>, breakdown of self-regulation; 'Inverse' of L \rightarrow H transition
- Physics: Drop in shear flow production

Key parameter: $k_{\parallel}^2 V_{The}^2 / \omega v_e$ (adiabaticity)

 Penetration of turbulence spreading drives cooling front, related to MARFE etc.

Desperately Seeking Greenwald, and beyond...

- What of current scaling?

- Tokamaks, RFP, Stellarators?

What of the Current Scaling?

- Obvious question: How does shear layer collapse scenario connect to Greenwald scaling $\bar{n} \sim I_p$?
- Key physics: shear/zonal flow response to drive is 'screened' by neoclassical dielectric

i.e. $-\epsilon_{neo} = 1 + 4\pi\rho c^2/B_{\theta}^2$

- $-\rho_{\theta}$ as screening length
- effective ZF inertia lower for larger I_p

Current Scaling, cont'd

• Shear flow drive:

emission from 'drift-mode' interaction

$$\frac{d}{dt} \left[\left\langle \left(\frac{e\phi}{T} \right)^2 \right\rangle_{ZF} \right] \approx \frac{\sum_k |S_{k,q}|^2 \tau_{c_{k,q}}}{|\epsilon_{neo}(q)|^2}$$
neoclassical response

- Production $\leftarrow \rightarrow$ beat drive
- Response (neoclassical)
- Rosenbluth-Hinton '97 et seq

Increasing I_p decreases ρ_{θ} and off-sets weaker ZF drive

$$\begin{pmatrix} e\hat{\phi} \\ T \end{pmatrix}_{ZF} \approx \frac{S_{k,q}}{\left(1 + 1.16 \frac{(q(r))^2}{\epsilon^{1/2}}\right) q_r^2 \rho_i^2}$$
classical neo zonal wave #

Current Scaling, cont'd

- Higher current strengthens ZF shear, for fixed drive
- Can "prop-up" shear layer vs weaker production
- ~ $(1 + 2q^2)\rho_i^2$ for collisional regime

What of other Donuts? Pretzels?

- All devices exhibit edge shear layer in L-mode and many similar fluctuation properties (Carreras, Hidalgo et. al.)
- RFP ~ Cylinder → 'neoclassical' effects ignorable
 But:
- RFP exhibits Greenwald scaling $n \sim I_p$!
- <u>Classical</u> ZF response $\rightarrow \rho_i$, but ρ_i set by current in RFP i.e. $\rho_i = \rho_{\theta i}$
- Stronger ZF shear at higher current, again

What of Stellarator? (Ackn T.-H. Watanabe, Carlos Hidalgo)

- Several attempts to 'translate' Greenwald scaling into stellarator ('magnetic geometry thinking): $B_{\theta} \rightarrow iota$, shear, ...
- Dubious outcomes...
- If ZF screening crucial, better ask: "What length scale appears in Z.F. response for stellarator?"
- Sugama-Watanabe: Principlal correction to classical screening is contribution from helically trapped particle (analysis for LHD).

What of Stellarator?, cont'd

- No obvious length scale emerges
- Need explore collisional regime
- →Begs: Will optimized stellarator have higher

density limit due more robust edge shear

layer?

→Issue remains open

Thoughts for Experiment

Suggestions for Experiment

- Criticality $k_{\parallel}^2 V_{The}^2 / \omega v_e \rightarrow T_e^2 / n_e \text{ trade off}$
- <u>Scale</u> of shear layer collapse? ρ_{θ} ?
- Turbulence spreading penetration depth? influence length
- Perturbative experiments: (J-TEXT, planned)
 - SMBI probe of relaxation (with fluctuations) \rightarrow relaxation time
 - ExB flow drive (Bias) \rightarrow enhance shear layer persistence beyond \bar{n}_g ?
 - RMP \rightarrow accelerate shear layer collapse?
- N.B. Studies of turbulence and transport as $n \rightarrow n_g$, are part of

(important) 'disruption question'.

In Particular:

- Can edge biasing (ala' driven L \rightarrow H) sustain $\bar{n} > \bar{n}_g$ by driving shear layer?
- Is shear layer collapse hysteretic?

• Is shear layer collapse yet another case of a back-transition of transport bifurcation?

What of H-mode?

- H-mode density limit involves back-transition prior to \bar{n}_g , so key HDL problem is high density back-transition (H \rightarrow L)
- *I_{turb}* in SOL can exceed that of pedestal

• Is HDL due

...

- Shear layer or well weakening? How?
- Invasion of pedestal from SOL turbulence
- Coupled pedestal-SOL model under consideration

General Conclusions

- Transport is fundamental to density limit. Cooling, etc.
 drive secondary phenomena.
- Shear layer collapse occurs as transport bifurcation from DW-ZF turbulence to convective cells, approaching density limit.
- Trends of Greenwald scaling follow from neoclassical zonal flow response.

Support by U.S. Department of Energy under Award Number DE-FG02-04ER54738