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This paper describes the ecology of drift wave turbulence and mean flows in the

coupled drift-ion acoustic wave plasma of CSDX linear device. A 1D reduced model

that studies the spatiotemporal evolution of plasma mean density n̄, and mean flows

v̄y and v̄z, in addition to fluctuation intensity ε, is presented. Here ε = 〈ñ2 +

(∇⊥φ̃)2 + ṽ2z〉 is the conserved energy field. The model uses a mixing length lmix

inversely proportional to both axial and azimuthal flow shear. This form of lmix

closes the loop on total energy. The model self-consistently describes variations in

plasma profiles, including mean flows and turbulent stresses. It investigates the

energy exchange between fluctuation intensity and mean profiles via particle flux

〈ñṽx〉 and Reynolds stresses 〈ṽxṽy〉 and 〈ṽxṽz〉. Acoustic coupling breaks parallel

symmetry and generates a parallel residual stress Πres
xz . The model uses a set of

equations to explain the acceleration of v̄y and v̄z via Πres
xy ∝ ∇n̄ and Πres

xy ∝ ∇n̄.

Flow dynamics in the parallel direction are related to those in the perpendicular

direction through an empirical coupling constant σV T . This constant measures the

degree of symmetry breaking in 〈kmkz〉 correlator, and determines the efficiency of

∇n̄ in driving v̄z. The model also establishes a relation between ∇v̄y and ∇v̄z, via the

ratio of the stresses Πres
xy and Πres

xz . When parallel to perpendicular flow coupling is

weak, axial Reynolds power PRe
xz = −〈ṽxṽz〉∇v̄z is less than the azimuthal Reynolds

power PRe
xy = −〈ṽxṽy〉∇v̄y. The model is then reduced to a 2-field predator/prey

model where v̄z is parasitic to the system and fluctuations evolve self-consistently.

Finally, turbulent diffusion in CSDX follows the scaling: DCSDX = DBρ
0.6
? where

DB is the Bohm diffusion coefficient, and ρ? is the ion gyroradius normalized to the

density gradient |∇n̄/n̄|−1.
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I. INTRODUCTION

Drift wave (DW) turbulence is one of the fundamental issues in magnetically confined

plasmas, and continues to be a subject of interest for many experimental and theoretical

studies1,2. Driven by radial inhomogeneities, drift wave fluctuations increase the turbulent

transport of particles and energy, which leads ultimately to loss of the plasma particles, heat,

etc. One mechanism that regulates these fluctuations is the self-generation and amplification

of sheared E×B flows by turbulent stresses. This is related, but not identical to the inverse

energy cascade in a two-dimensional fluid that occurs via local coupling in the wavenumber

space. Here, the generation of zonal (azimuthal) flows occurs through non-local nonlinear

energy transfer between the small and large scales of the plasma3–5. Such flows play an

important role in saturating the drift wave instabilities, in L − H transition, and in the

formation of internal transport barriers (ITBs)6. Drift wave turbulence is also responsible

for the generation of toroidal/axial flows, which play a crucial role in the macrostability

of fusion grade tokamak plasmas. In particular, intrinsic toroidal flows are needed in large

scale devices, where momentum input through NBI is not effective. Such flows stabilize

some MHD and resistive wall modes, suppress turbulence, and enhance the overall particle

confinement7,8.

The relationship between drift waves and zonal flows has been extensively studied, so

much so that the problem is now referred to as drift wave/zonal flow turbulence. Several

self-regulating predator-prey models were developed, where the drift wave fluctuations corre-

spond to the prey population and the zonal flows correspond to the predator population9–11.

As the population of drift waves grows rapidly, it supports the predator population. Zonal

flows then control the drift waves by feeding on them, while being themselves regulated

by a predator-prey competition and by nonlinear damping2. The existing versions of these

models however, do not adequately address the problem of zonal flow saturation.

In a different vein, axial flow formation by turbulence requires a breaking in parallel

symmetry and a non-zero correlator 〈kzkm〉 =
∑

m kzkm|φ̃|2. In tokamaks, it is (usually) the

magnetic shear that enables the parallel symmetry breaking. In linear devices however, B

is constant and standard mechanisms do not apply. Recently, a parallel symmetry breaking

mechanism that is based in drift wave turbulence and axial flow shear was developed12.

This mechanism does not rely on complex magnetic geometry to generate a parallel residual
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stress Πres
xz ∝ 〈kzkm〉. The energy released from the density gradient is used to accelerate

an axial flow through a negative viscosity process. For strong flows, the parallel shear flow

instability (PSFI) controls the dynamics of v̄z.

Inverse energy cascade has been observed in both 2D and 3D systems13. Examples include

reversal of the flux of energy in geophysical flows subject to the Earth’s rotation14, as well

as in shallow fluid layers15. In plasmas, inverse energy cascade that results in the generation

of broadband turbulence and large scale coherent structures from DW fluctuations is widely

accepted now. With drift waves triggering the formation of both axial and azimuthal flows

(Fig.1), fundamental questions concerning the flow configuration arise: What mechanisms

regulate the self-organization process, and ordain the final configuration of turbulence and

flows in the plasma? How is energy partitioned between the fluctuations and the different

flows v̄z and v̄y in the plasma? Moreover, since fluctuations and mean flows constitute an

interdependent system, could there be a coupling relation between v̄y and v̄z? If so, what

determines the strength of this coupling? And most importantly, how does this coupling

affect the energy branching ratio in the plasma?

To answer these questions, we present in this paper a 1D (in radius) reduced k − ε type

model that describes the evolution of the three mean fields: density n̄, axial and azimuthal

flows v̄z and v̄y, as well as variations in the fluctuation intensity ε = 〈ñ2+(∇⊥φ̃)2+ṽ2z〉, in the

linear plasma of CSDX. The model is derived from the Hasegawa-Wakatani system with axial

flow evolution included. The model self-consistently relates variations in ε to the evolution

of the mean profiles via the particle flux 〈ñṽx〉, and the parallel and perpendicular Reynolds

stresses 〈ṽxṽz〉 and 〈ṽxṽy〉. Because of parallel compression, the fluctuation intensity is the

relevant conserved field.

To explain the relation between v̄y and v̄z with respect to ε, the model uses a mixing length

lmix that reflects turbulence suppression by the axial and azimuthal flow shear. External

particle and axial flow sources which result from injection of neutrals and axial momentum,

are included in this model. When the work done by the fluctuations on the parallel flow

is less than that done on the perpendicular flow, the model can be reduced to a 2-field

predator-prey model, where the azimuthal flow feeds on the density population.

The model is a necessary intermediary between a 0D model that shows the structure of

the flows and fluctuations, and a full DNS. For a multiscale system such as CSDX, a reduced

model provides a route to an interpretation of the experimental results, and gives detailed
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FIG. 1: A schematic of the ecology of drift wave turbulence, zonal, and axial flows. The
first feedback loop relates the drift waves to the zonal flows via 〈ṽxṽy〉. A second feedback
loop exists as a result of a potential relation between v̄y and v̄z. The second loop relates

the fluctuations to both mean flows.

insight into the feedback loops between the disparate scales. At the same time, it avoids

the labor of a full DNS. The model consists of a set of compact equations that describe the

evolution of the plasma stresses and flows. It shows how ∇n̄ free energy accelerates both v̄y

and v̄z, and investigates the coupling relation between the parallel and perpendicular flow

dynamics in CSDX by introducing σV T , the empirical measure of the acoustic coupling in

the plasma.

The 1D reduced model description taken here should provide a useful new intermedi-

ate approach for the simulation of self-consistent evolution edge and SOL plasma profiles,

transverse and parallel flows and turbulence, and would allow the study of main plasma and
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trace impurity dynamics across timescales ranging from a few turbulent correlation times

up to system equilibrium timescales. When modified to include toroidal and open-field line

effects, and extended to a 2D geometry along the magnetic field and binormal directions, our

proposed reduced model would bridge the gap between existing time-averaged fluid codes

of the edge and SOL region of confinement devices (see e.g. ref.16) which are incapable of

capturing such self-consistent dynamical phenomena, and fully turbulent direct numerical

simulations (see e.g. refs.17,18) which capture self-consistent profile and flow evolution but

are computationally expensive and thus difficult to use for long time scale dynamical evolu-

tion studies. Such a new capability might be useful to study the self-consistent entrainment

and transport of eroded wall impurities in flowing edge and SOL plasma and the long-time

migration of these materials in the SOL and divertor regions of confinement devices. These

obvious extensions are left as future work.

The rest of the paper is organized as follows. Section II presents the structure of the

model, as well as a full derivation of the involved equations and an interpretation of each

term of these equations. Section III elaborates on the relation between drift waves and

zonal flows, and calculates the turbulent expressions for the particle flux and the vorticity

flux. Expressions for the perpendicular Reynolds stress and the Reynolds work are also

presented. Section IV is dedicated to the parallel Reynolds stress. This sections explains

how drift waves accelerate the axial flows through 〈ṽxṽz〉. An empirical constant σV T is

introduced in this section. By analogy to pipe flows, σV T is presented as a measure of the

acoustic coupling or the efficiency of converting the ∇n̄ energy to drive an axial flow. σV T

is then used to establish a direct relation between the axial and the azimuthal flow shear, as

both residual stresses Πres
xy and Πres

xz are proportional to ∇n. An expression for the mixing

length lmix that depends on both shears is derived in section V. In section VI, we give a

summary and a discussion of the model, before reducing it to a 2-field predator-prey model

in section VII. Finally, conclusion and discussion are given in section VIII.

II. THE MODEL AND ITS STRUCTURE

The basic equations are derived from the Hasegawa-Wakatani system19,20, with axial flow

velocity ṽz evolution included. In a box of dimensions: 0 ≤ x ≤ Lx, 0 ≤ y < Ly and
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0 ≤ z ≤ Lz, and for a straight magnetic field B = Bẑ, these equations are21:

dñ

dt
+ vE.∇〈n〉+ n0∇zṽz = −v

2
th

νei
∇2
z(φ̃− ñ) +D0∇2

⊥ñ+ {ñ, φ̃} (1a)

d∇2
⊥φ̃

dt
+ vE.∇〈∇2

⊥φ〉 = −v
2
th

νei
∇2
z(φ̃− ñ) + µ0∇4

⊥φ̃− νin(v̄y − v̄n) + {∇2
⊥φ̃, φ̃} (1b)

dṽz
dt

+ vE.∇〈vz〉 = −c2s∇zñ+ ν0∇2
⊥ṽz − νin(v̄z − v̄n) + {ṽz, φ̃} (1c)

Here x, y and z are the radial, azimuthal and axial directions respectively. The fields are

normalized as follows: ñ ≡ ñe/n0, φ̃ ≡ eφ̃/Te, t ≡ ωcit, ṽz ≡ ṽz/cs and length ≡ length/ρs.

n0 and Te are the average density and electron temperature respectively, ωci = eB/mi is

the ion cyclotron frequency, cs =
√
Te/mi is the ion sound speed and ρs = cs/ωci is the ion

Larmor radius with temperature Te. vth and νei are the electron thermal velocity and the

electron-ion collision frequency, respectively. The total time derivative is: d/dt = ∂t+vE.∇,

and the axial ion pressure gradient is neglected in the ṽz equation. The neutral friction,

proportional to the ion-neutral collision frequency νin = nn
√

8Ti/πmi, is a natural sink

for energy that inverse cascades to larger scales. This friction is especially significant near

the plasma boundary. Its expression can be further simplified by taking v̄n ≈ 0 close to

the boundary. Terms that are proportional to D0, µ0 and ν0 dissipate energy via viscous

collisions. Finally, the nonlinear advection terms are expressed as Poisson brackets: {f, g} =

∂xf∂yg − ∂xg∂yf , and represent spatial scattering of fluctuations.

The system of eqs.(1) describes a variety of linearly unstable modes. One eigenmode of

this system is the strongly damped ion drift wave with an eigenfrequency that satisfies

the relation: |ω|< |kzcs|. Here kz is the parallel wave number. Such a wave is heavily

damped, will be difficult to excite, and thus will not be considered here. A second solution

to this system describes the dynamics of the parallel shear flow instability (PSFI). The PSFI

describes turbulence production due to free energy released from parallel flow shear22,23. In

contrast to other linear plasmas24,25, experimental results from the CSDX linear device show

that the parallel flow shear v̄′z is well below the critical threshold necessary to drive PSFI21.

The PSFI is thus heavily damped in CSDX, and will also not be considered here. A third

solution describes the dynamics of the coupled 3D drift-ion acoustic turbulence. In this

paper, we are mainly concerned with the coupling between the parallel and perpendicular

flow dynamics. Thus we focus only on the dynamics of the coupled drift-ion acoustic waves.
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We decompose each field into a mean and a fluctuating part: f = 〈f〉 + f̃(x, y, z, t), where

the averaging is performed over the directions of symmetry y and z:

f̄(x, t) = 〈f(x, t)〉 =
1

LzLy

∫ Lz

0

dz

∫ Ly

0

dyf(x, y, z, t)

Here we assume that the plasma profiles do not change substantially along the axial direction.

In the presence of compressible parallel flows, conservation of potential vorticity (PV) -

and thus that of the potential enstrophy - is broken. Coupling between the PV fluctuations

and the parallel flow compression thus defines an energy transfer channel between the parallel

and perpendicular flow dynamics. This energy exchange influences the wave momentum

density and modifies the zonal momentum balance theorem26. In its new form, the zonal

momentum balance theorem shows that coupling between drift-acoustic waves acts as a

driving source that allows stationary turbulence to excite zonal flows in the absence of any

driving force or potential enstrophy flux. The coupling drive involves both perpendicular

and parallel dynamics, and does not require symmetry breaking in the turbulence spectrum.

Therefore, instead of using potential enstrophy as the fluctuation intensity field, we use the

mean fluctuation energy 〈ε〉 defined as:

〈ε〉 =
1

LzLy

L‖∫
0

dz

2π∫
0

dθε(r) =
1

LzLy

∫ Lz

0

dz

∫ Ly

0

dyε(x) =
〈ñ2 + (∇⊥φ̃)2 + ṽ2z〉

2
,

where z and y are the axial (parallel) and azimuthal (perpendicular) directions respectively,

and L‖ = Lz is the axial length of the plasma. Here we assume periodicity in the axial

direction z. The mean fluctuating energy 〈ε〉, interpreted as a sum of internal energy 〈ñ2〉

and kinetic energy: 〈(∇⊥φ̃)2〉+ 〈ṽ2z〉, is conserved up to dissipation and internal production,

as demonstrated later. The time evolution of 〈ε〉 is:

d〈ε〉
dt

=
1

LzLy

∫
(ñ
dñ

dt
+∇⊥φ̃

d∇⊥φ̃
dt

+ ṽz
dṽz
dt

)dydz (2)

An expression for eq.(2) is obtained by multiplying the set of eqs.(1) by ñ, −φ̃ and ṽz
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respectively, and integrating along the directions of symmetry to get:

〈dε
dt
〉 = −〈ñṽx〉

dn̄

dx
− 〈ṽxṽy〉

dv̄y
dx
− 〈ṽxṽz〉

dv̄z
dx
− 1

LzLy

v2th,e
νei

∫ [
∂z(Φ̃− ñ)

]2
dz − 〈ñṽz〉

− νin
(
〈ṽ2y〉+ 〈ṽ2z〉

)
− 1

LzLy

∫ (
D0(∇⊥ñ)2 + µ0(∇2

⊥φ̃)2 + ν0(∇⊥ṽz)2
)
dydz

+
1

LzLy

∫ (
ñ{ñ, φ̃} − φ̃{∇2

⊥φ̃, φ̃}+ ṽz{ṽz, φ̃}
)
dydz

(3)

Here we have used periodic boundary conditions in the y direction to obtain the fourth term

of the RHS of eq.(3). The first three terms on the RHS of eq.(3) are direct mean-fluctuation

coupling terms. They relate the variations of ε to the variations of the mean profiles of n̄,

v̄y and v̄z via 〈ñṽx〉, 〈ṽxṽy〉 and 〈ṽxṽz〉.

A common issue that arises while using such reduced models is the closure problem. To

obtain equations that contain only the mean quantities, we simplify the energy equation

by examining each term of eq.(3), in order to properly construct the equation for ε. In

the case of pure drift wave turbulence, the dv̄z/dx term is absent and ω < ω? ∝ ∇n̄. The

density gradient term is then the only source of energy production. It is positive definite,

and represents the rate at which free energy is extracted from the density gradient ∇n̄.

The second term on the RHS of eq.(3) is the Reynolds power. It represents the free energy

coupled to the azimuthal flow v̄y via the Reynolds stress 〈ṽxṽy〉. For pure DWs and stable

Kelvin-Helmholtz (KH) modes, this energy is transfered to the mean flow and the Reynolds

power is negative. The third term, on the other hand, can represent either an energy source

or an energy sink. Depending on the sign of the cross phase between ṽx and ṽz, this term can

be either positive or negative. A detailed discussion of this cross phase relation and of the

parallel Reynolds stress is deferred to a later section. The dissipation term −
∫

[∂z(Φ̃−ñ)]2dz

is associated with the phase difference between the density fluctuations ñ and the electric

potential fluctuations φ̃. This term is always negative. In the frequently encountered case

of weakly non-adiabatic electrons, this term is always smaller than the energy input source

term: −
∫

[∂z(Φ̃ − ñ)]2dz � −〈ñṽx〉∇n̄27. Indeed, for ñ = (1 − i∆)φ̃ with ∆ � 1 and

ω ' |ω?|/(1 + k2⊥ρ
2
s), the estimates of the dissipation and the energy input terms are:

ω2(|ω?|−ω)2 and ω|ω?|(|ω?|−ω)2 respectively. With ω < |ω?|, the dissipation term can be

neglected from eq.(3). The 〈ñṽz〉 term represents parallel particle flux. Since such flux can

be experimentally zeroed, it will be omitted from the energy equation.
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Terms that are proportional to D0, µ0 and ν0, represent collisional energy dissipation by

direct energy cascade. These terms damp the fluctuation energy at small scales at a rate
√
ε/lmix. We write the energy dissipation as ε3/2/lmix, and leave the discussion of the

expression for the turbulent mixing length lmix to a subsequent section. In addition to

collisional dissipation, ion-neutral collisions represent a nonlinear energy damping to larger

scales. Both collisional dissipation and neutral energy damping represent a sink of turbulent

energy ε. Finally, the nonlinear terms in eqs. (1) are related to the E × B drift, the

polarization drift, and the axial drift respectively. These terms represent the spreading

of turbulence. This spreading is mesoscopic, and involves two aspects. The first aspect is a

perturbation in the local intensity gradient ∂xε, i.e., a diffusion of the energy envelope to a

more stable region away from its source. The second aspect includes nonlinear interaction

of the local fluctuations via inverse cascade. Based in the three wave coupling, zonal flows

created through inverse cascade shear the fluctuations and regulate turbulence spreading28,29.

We write this energy spreading as a Fickian energy flux: Γε = −Dε∂xε = −lmixε1/2∂xε. An

energy source P representing drift wave turbulent energy production is added to eq.(3).

The generation of these fluctuations results from the relaxation of the mean profiles and

represents the excitation in the linear phase. The energy production term is linear in ε and

proportional to γε, the characteristic growth rate of the DW instabilities: P = γεε. The

final form of eq.(3) then becomes:

∂ε

∂t
+ ∂xΓε = −〈ñṽx〉

dn̄

dx
− 〈ṽxṽz〉

dv̄z
dx
− 〈ṽxṽy〉

dv̄y
dx
− ε3/2

lmix
+ P (4)

In addition to eq.(4), the equations for n̄, v̄y and v̄z, which form the reduced model of

turbulence intensity for the modified Hasegawa-Wakatani model are:

∂n̄

∂t
= − ∂

∂x
〈ṽxñ〉+Dc

∂2n̄

∂x2
+ Sn (5)

∂v̄z
∂t

= − ∂

∂x
〈ṽxṽz〉+ νc,‖

∂2v̄z
∂x2

− νinv̄z − νiiv̄z + Svz (6)

∂v̄y
∂t

= − ∂

∂x
〈ṽxṽy〉+ νc,⊥

∂2v̄y
∂x2

− νinv̄y − νiiv̄y + Svy (7)

Here we assumed that the electron pressure gradient does not vary neither in the axial nor

in the azimuthal direction. Note however that this assumption remains valid only in the
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case of an attached plasma. When the pressure of the injected neutral gas is high enough,

a detached plasma is obtained, and axial and azimuthal variations of ∇pe are no longer

equal to zero. The first terms on the RHS of eqs.(5-7) represent particle and momentum

transport, while those proportional to Dc, νc,⊥ and νc,‖ represent collisional diffusivity and

viscosity respectively. A particle source Sn representing the ionization of the injected neutrals

is added to the density equation. Similarly, axial and azimuthal momentum sources Svz

and Svy representing external input of momentum into the plasma are added to v̄y and

v̄z equations. In CSDX however, no external momentum is injected and Svz = Svy = 0,

in contrast to refs.22,25,30 where external axial momentum is injected into the plasma. In

eq.(7), the term proportional to the ion-neutral collision frequency νin represents momentum

transfer between ions and neutrals, and is significant only in the boundary layer close to

the plasma wall. The last term proportional to νii represents viscous damping via ion-ion

collisions. The expressions for viscous and diffusive coefficients are31:

Dc =
D

1 + ω2
ciτ

2
i

' De

(ωciτi)2
∼

4
√

2πn0 ln Λe2
√
me

3
√
Te

(8a)

νc,⊥ = νi,⊥ =
3

10

niTi
ω2
ciτi
∼ 2
√
πn2

0 ln Λe2m
3/2
i

T
1/2
i

(8b)

νc,‖ = νe,‖ = 0.73neTeτe ∼
3
√
meT

5/2
e

4
√

2π ln Λe4
(8c)

The system formed by eqs.(4-7) conserve the total energy Etot in time, up to dissipation and

production. Here Etot is equal to the sum of the turbulent energy ε and the mean energy

Emean = (n̄2 + v̄2z + (∇⊥φ̄)2)/2. For zero energy flux conditions at the boundaries (∂xε = 0),

energy conservation (up to dissipation and production) is demonstrated as:

d〈Etot〉
dt

=
d〈ε〉
dt

+
d〈Emean〉

dt

=
d〈ε〉
dt

+
1

2

∂

∂t

∫ [
n̄2 + v̄2z + (∇⊥φ̄)2

]
dzdy

= −〈ñṽx〉
dn̄

dx
− 〈ṽxṽz〉

dv̄z
dx
− 〈ṽxṽy〉

dv̄y
dx

+ P − ε3/2

lmix

+ 〈ñṽx〉
dn̄

dx
+ 〈ṽxṽz〉

dv̄z
dx

+ 〈ṽxṽy〉
dv̄y
dx

= −ε
3/2

lmix
+ P

(9)
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where the order of operations .̄. and 〈..〉 have been interchanged. Eqs.(4-7) thus constitute a

model that describes profile evolution for both parallel and perpendicular flows, in addition

to the plasma density, by self-consistently evolving turbulence as well as the mean profiles.

This model offers the possibility to explain the generation and acceleration of intrinsic axial

flows as a result of changes in the turbulence spectrum, governed by conservation of total

energy Etot.

III. CALCULATING THE TURBULENT FLUXES

Eqs.(4-7) describe time and space evolution of the three mean fields: n̄, v̄y and v̄z, in

addition to the mean fluctuating energy ε. The solution of this system of equations requires

calculating the expressions for the different turbulent fluxes in terms of ε and the mean field

gradients. In this section, we determine the expressions for the various turbulent fluxes,

with the provision that these expressions are valid only in the case of nearly adiabatic

electrons, that is when k2zv
2
th/(νei|ω|) � 1. In this limit, quasi-linear theory is used to

calculate the expressions for the transport fluxes by Fourier decomposing each field as:

f̃m = δfm(x)ei[kmy+kzz−ωt] where ω = ωr + i|γm|, with |γm|� ωrm = ω?(1 + k2⊥ρ
2
s)
−1. Here

ω? = kmvd, where the electron diamagnetic velocity is vd = −ρscs∇n̄ = ρscs/Ln,

A. The Turbulent Particle Flux

The particle flux 〈ñṽx〉 is calculated after linearizing the density equation:

∂ñ

∂t
− ṽxvd +∇zṽz = −v

2
th

νei
∇2
z(φ̃− ñ) +D0∇2

⊥ñ+ {ñ, φ̃} (10)

The expression for the particle flux is then:

Γ = 〈ñṽx〉 =
∑
m

vd(α + |γm|)− αωr/km
|ω/km + iα/km|2

|δφ2| (11)

In the case of classic resistive drift waves, |γm|� 1 and the particle flux is:

Γ =
∑
m

α
vd − ωr/km

|ω/km + iα/km|2
|δφ2| (12)
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where α = k2zv
2
th/νei is the plasma adiabaticity parameter. The first term of the numerator

represents diffusive relaxation of the density gradient, while the second is due to pumping

by waves. The competition between these two terms is what ultimately sets the sign of

Γ, i.e., the direction of the particle flux. For adiabatic electrons: k2zv
2
th/νei � |ω|, and

α� (ωr, |γm|). The particle flux then becomes:

Γ = 〈ñṽx〉 =
∑
m

−k
2
mρ

2
sc

2
s

α
.
k2⊥ρ

2
s

1 + k2⊥ρ
2
s

.
1

n0

dn̄

dx
.|δφ2|

= −D. 1

n0

dn̄

dx
> 0

(13)

where the particle diffusion coefficient D is:

D =
∑
m

k2mρ
2
sc

2
s

α
.
k2⊥ρ

2
s

1 + k2⊥ρ
2
s

|δφ2|= k2⊥ρ
2
s

1 + k2⊥ρ
2
s

.
〈δv2x〉
α
≈ fε

α
(14)

The factor f introduced in eq.(14) represents the fraction of the fluctuation energy ε which

is kinetic energy of radial motion, i.e., f = 〈δv2x〉/ε.

1. Expression for the energy fraction f

Since the fluctuation energy ε is composed of internal energy as well as kinetic energy for

both radial and axial motion, we write the following expression for the fraction of ε allocated

to kinetic energy in the radial motion as:

f =
〈δv2x〉
ε

=
〈δv2x〉

〈δn2〉+ 〈δv2x〉+ 〈δv2z〉

Writing the density and radial velocity fluctuations as δn = (1−i∆)δφ and δvx = −ik⊥ρscsδφ

respectively, straightforward linearization of the axial velocity equation gives:

〈δv2z〉 =
(kmρscs∇v̄z − kzc2s(1 + ∆2))

ω2 + 1/τ 2c
〈δφ2〉

With τc = lmix/〈ṽ2x〉1/2 = lmix/
√
fε, the denominator is equal to:

1

ω2 + 1/τ 2c
=

l2mix(1 + k2⊥ρ
2
s)

2(
l2mixω

?2 + fε(1 + k2⊥ρ
2
s)

2
)

13



The final expression for f is:

f =
k2⊥ρ

2
s

(1 + ∆2) + k2⊥ρ
2
s +
|kmρs∇v̄z − kzcs(1− i∆)|2

ω2 + 1/τ 2c

(15)

For adiabatic electrons and in the absence of mean axial shear (v̄′z = 0), f is:

f =
k2⊥ρ

2
s

1 + k2⊥ρ
2
s + k2zc

2
s/(ω

2 + 1/τ 2c )
(16)

with ω = |ωr|= kmρscs/[Ln(1 + k2⊥ρ
2
s)] and 1/τ 2c = ε/l2mix. In the limit of small kz and

pure DWs, eq.(16) gives: f = k2⊥ρ
2
s/(1 + k2⊥ρ

2
s) ' k2⊥ρ

2
s and 〈δv2x〉 ' k2⊥ρ

2
sε, as expected for

adiabatic electrons.

Eq.(15) includes the correlator 〈kmkz〉, which expresses the cross phase relation between

the velocity fluctuations in the radial direction (ṽx ∼ kmφ̃) and those in the axial direction

(ṽz ∼ kzp̃ ∼ kzTeñ). Here we assumed adiabatic response with constant temperature Te. In

CSDX, the parallel to perpendicular coupling is small in comparison to k2⊥ρ
2
s, as indicated

by measurements of modest axial flow velocities32,33. The 〈kmkz〉 correlator can thus be

neglected in f . However, in the parallel Reynolds stress, 〈kmkz〉 appears as zeroth order and

so cannot be dropped. Here it will be expressed in terms of an empirical constant σV T that

will be introduced in a subsequent section.

B. The Vorticity Flux, the Perpendicular Reynolds Stress and the Reynolds

Work

The expression for the Reynolds force needed in eq.(7) is obtained from Taylor’s identity:

−∂x〈ṽxṽy〉 = 〈ṽx∇2
⊥φ̃〉, which relates the Reynolds force to the vorticity flux, and links the

eddy fluxes of momentum and potential vorticity34. When neutrals are negligible and in

the presence of an externally imposed azimuthal flow V0, the quasi-linear expression for the

14



vorticity flux Πxy is obtained after linearizing the vorticity equation35:

Πxy =
∑
m

{
− |γm|

vd + d〈∇2
⊥φ〉/dx+ V ′′0

|V ′0 − ω|2

+
|γm|vd + α

(
vd + V0 − ωr/km

)
|ω + iα− V ′0 |2

}
k2mρ

2
sc

2
s|δφ2|

= −χnon−resonanty d(〈∇2
⊥φ〉+ V ′0)/dx+ Πres

xy

= −χnon−resonanty d2(v̄y + V0)/dx
2 + Πres

xy

(17)

Here 〈∇2
⊥φ〉 is a self generated flow driven by the DW interaction. The expression for

the vorticity flux thus consists of a residual flux Πres
xy and a diffusive part proportional to

χnon−resonanty :

χnon−resonanty =
∑
m

|γm|
|V ′0 − ω|2

k2mρ
2
sc

2
s|δφ2| (18)

The denominator of χnon−resonanty is a competition between the wave frequency ω and the

flow shear V ′0 . In CSDX, a comparison between the shearing rate V ′0 and the drift wave

frequency ω shows that V ′0 � ω36. Thus we neglect the flow shear from the expression for

χnon−resonanty :

χnon−resonanty =
∑
m

|γm|
|ω|2

k2mρ
2
sc

2
s|δφ2|

We also mention that the total turbulent viscosity is: χtoty = χresonanty + χnon−resonanty , where

χresonanty and χnon−resonanty are the resonant and the nonresonant turbulent viscosities respec-

tively. Here χresonanty =
∑

m k
2
mρ

2
sc

2
sπδ(ω − kmv̄y − kzv̄z) results from the resonance between

the plasma flows and the unstable mode of frequency ω37. Hereafter, we drop the resonant

and non− resonant superscripts to simplify the notation. The residual vorticity stress Πres
xy

is:

Πres
xy =

∑
m

{
|γm|vd + α(vd − ωr/km)

|ω + iα|2

}
k2mρ

2
sc

2
s|δφ2|−χyvd (19)

Note that it is through Πres
xy that the free energy in the density gradient is converted into

positive Reynolds work, resulting in the generation of flow shear. The residual stress Πres
xy is

the only term in the vorticity flux that survives when both v̄y and v̄′y vanish. Thus, it must

be the case that the density gradient ∇n̄ accelerates the azimuthal flow from rest through

15



Πres
xy . For pure Kelvin-Helmholtz modes, kz = α = 0 and the total stress is:

Πxy = −χyd〈∇2
⊥φ〉/dx (20)

The residual vorticity of the pure KH modes is zero and the density gradient alone cannot

drive these instabilities. KH modes simply relax the E×B flow profile via viscous diffusion.

Using the expression for the particle flux, Πres
xy is rewritten as35:

Πres
xy = Γ− χyvd (21)

In the near adiabatic limit, the particle flux Γ ∝ 1/α � 1 as α � |ω| and the residual

stress is: Πres
xy = −χyvd = −χyρscs∇n̄. The expressions for χy and Πres

xy in this limit are:

χy =
∑
m

|γm|
|ω|2

k2mρ
2
sc

2
s|δφ2|= τc〈δv2x〉 = lmix

√
fε

Πres
xy = −

∑
m

|γm|ω?k2mρsc2s
|ω|2

|δφ2|= −〈δv
2
x〉τccs
ρsLn

= − lmix
√
fεωci

Ln

(22)

where the fluctuation correlation time is τc = lmix/
√
fε.

In addition to the Reynolds force, the expression for the local Reynolds power is needed in

eq.(4). For this, we write the Reynolds stress as:

〈ṽxṽy〉 = −χy
dv̄y
dx

+ 〈ṽxṽy〉res

The total Reynolds power PRe =
∫

(dv̄y/dx)〈ṽxṽy〉dV where dV = dxdydz can then be

written as:

PRe =

∫
dv̄y
dx

(
− χy

dv̄y
dx

+ 〈ṽxṽy〉res
)
dV

=

∫
−χy

(dv̄y
dx

)2
dV +

∫
dv̄y
dx
〈ṽxṽy〉resdV

=

∫ {
− χy

(dv̄y
dx

)2
− v̄y∂x

[
〈ṽxṽy〉res

]}
dV + v̄y〈ṽxṽy〉res

∣∣∣
bound

=

∫
−χy(

dv̄y
dx

)2dV +

∫
v̄yΠ

res
xy dV

(23)
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Here we drop the boundary term v̄y〈ṽxṽy〉res
∣∣∣
bound

that results from integration by parts. We

justify this by the strong neutral drag (close to the plasma boundary), so the perpendicular

flow v̄y must vanish at the boundary due to no-slip condition. The local Reynolds power

density is thus:

〈ṽxṽy〉
dv̄y
dx

= −χy
(dv̄y
dx

)2
+ v̄yΠ

res
xy (24)

IV. THE PARALLEL REYNOLDS STRESS 〈ṽxṽz〉

Adding axial flow to the Hasegawa-Wakatani equations breaks conservation of PV, and

thus that of potential enstrophy. Moreover, it introduces an energy transfer channel between

the parallel and perpendicular directions, via acoustic coupling. Experimental results show

that when drift waves dominate, the turbulence production due to the release of free energy

in ∇n̄, can excite secondary parallel flows22,25,30,38. Theoretical studies also show that both

axial and zonal flows are driven by turbulence, particularly by the non-diffusive residual

stress in both expressions for 〈ṽxṽy〉 and 〈ṽxṽz〉21,23,32,39,40. Ref.26 investigates the relation

between the axial and azimuthal flows and turbulence, and formulates a new zonal momen-

tum balance theorem for the coupled drift-ion acoustic waves. Due to acoustic coupling, a

dynamical mechanism for ZF generation is established. This mechanism does not require

any potential vorticity flux. The sheared E × B layers so formed, break parallel symmetry

(in a sheared magnetic field), generate a non-zero parallel residual stress Πres
xz , and accelerate

the axial flow v̄z, according to the mechanism of ref.41. We note, however, that strong E×B

shear eventually will damp the PSFI (Fig.2). As an aside, we mention that the acceleration

of zonal flows does not require external breaking of azimuthal symmetry. Zonal flows are

generated by modulational instability of drift waves to a seed shear. This does not require a

geometrically broken azimuthal symmetry. Axial flows on the other hand require a non-zero

parallel residual stress, which can develop from a broken parallel spectral symmetry. This is

one reason why zonal flows are much easier to accelerate than parallel flows. These parallel

symmetry breaking mechanisms usually require the presence of a magnetic shear. However,

such mechanisms are not relevant to CSDX, since B is constant and magnetic shear is absent.

Symmetry breaking is then provided by a dynamical mechanism, based on DWs and mo-

mentum evolution12. The growth rate of the DWs in CSDX is determined by the frequency

shift: |γ|∼ ω? − ω. A test flow shear v̄′z changes this frequency shift, setting modes with
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FIG. 2: Feedback loop between axial and zonal flows via 〈kmkz〉. A strong zonal flow shear
can affect the axial flow.

kmkz|v̄′z|> 0 to grow faster than those with kmkz|v̄′z|< 0, and causing a spectral imbalance

in the km − kz space to develop. This creates a parallel residual stress Πres
xz = −|χresz |∇v̄z.

The latter reinforces the test shear, and amplifies the parallel flow through a process of

’negative viscosity’. If v̄′z keeps increasing, the parallel shear flow instability (PSFI) will

occur22,24. When the PSFI is turned on, ∇v̄z saturates at the PSFI linear threshold and the

total viscosity remains positive: χtotz = χDWz +χPSFIz −|χresz |> 0. In CSDX, no external axial

momentum is injected into the plasma, and ∇v̄z never exceeds the critical value necessary

to destabilize the PSFI21. Turbulence production thus primarily accelerates the axial flow

in CSDX without destabilizing it.

A. Calculating the Expression for 〈ṽxṽz〉

In the near adiabatic limit, the expression for the parallel stress 〈ṽxṽz〉 is obtained by

writing ṽx = −ikmρscsφ̃ and using eq.(1c) to get:

〈ṽxṽz〉 = −|γm|〈δv
2
x〉

|ω|2
dv̄z
dx

+ 〈kmkz〉ρsc3s
[ |γm|
|ω|2

+
(ω? − ωr)
|ω|α

]
(25)

In obtaining the expression for 〈ṽxṽz〉, we neglected the contribution of the flow shear V ′0

with respect to the wave frequency ω, as we did in the expression for 〈ṽxṽy〉. Just like χy,
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the total parallel diffusivity χz is equal to the sum of the resonant and the non-resonant

part. The first component of eq.(25) is a diffusive term that is written as −χzdv̄z/dx, where

the turbulent diffusivity is:

χz =
|γm|〈δv2x〉
|ω|2

= τc〈δv2x〉 = lmix
√
fε (26)

We note that the turbulent parallel diffusivity χz given in eq.(26) is the same as the per-

pendicular diffusivity χy given in eq.(III B). The remaining part of eq.(25), involving the

correlator 〈kmkz〉 =
∑
kmkz|δφ2|, constitutes the parallel residual stress, Πres

xz . This term is

responsible for generating the intrinsic axial flow. The expression for the parallel residual

stress is:

Πres
xz =

∑
m

|γm|kmkzρsc3s
|ω|2

|δφ2|+kmkzρsc
3
s(ω

? − ωr)
|ω|α

|δφ2|

=
∑
m

|γm|kmkzρsc3s
|ω|2

|δφ2|+kmkzρ
3
sc

3
sk

2
⊥

α
|δφ2|

= 〈kmkz〉ρsc3s
[
τc +

ρ2sk
2
⊥

α

]
(27)

B. Analogy to Pipe Flow: A Simple Approach to the Physics of the 〈kmkz〉

Correlator

In order to calculate the parallel residual stress Πres
xz , an expression for the correlator

〈kmkz〉 =
∑
kmkz|δφ2| is needed. More importantly, in order to model the axial flow gen-

eration in CSDX, 〈kmkz〉 needs to be expressed in terms of a simple coefficient that can be

used in numerical results. We thus draw an analogy with turbulence in a pipe flow and write

ṽz as:

ṽz = −ṽxτc∇v̄z + ṽres

= −lmix∇v̄z +R∇n̄
(28)

The first term (proportional to ∇v̄z) results from turbulent mixing on a scale lmix. The

second term (proportional to ∇n̄) relates to DWs and represents the acoustic coupling from

turbulent mixing of ∇n̄. The latter shows how the free energy creates a residual velocity
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ṽresz , (i.e., a parallel residual stress). The parallel velocity equation reads:

dṽz
dt

= −ṽx
dv̄z
dx
− c2s∇z

[eφ̃
Te

+
p̃e
pe

]
(29)

In the CSDX plasma which is nearly adiabatic and where variations of the electron tem-

perature are negligible, we have eφ̃/Te ∼ ñ/n̄ and p̃e/pe ∼ ñ/n̄. Proceeding as for Prandtl

mixing length theory, we write ñ/n̄ ∼ lmix|∇n̄|/n̄, and obtain:

ṽresz =
σV T c

2
sτc

L‖
.
(−lmix

n̄

dn̄

dx

)
where L‖ = Lz is the axial plasma length, n̄ is the average plasma density and τc = lmix/ṽx

is the fluctuation correlation time. The constant σV T is introduced as a dimensionless

scaling factor between variations of ṽz and variations of the density gradient ∇n̄. The final

expression for ṽz is then:

ṽz = −lmix
dv̄z
dx

+
σV T c

2
sτc

L‖
.
(
− lmix

n̄

dn

dx

)
,

The parallel Reynolds stress 〈ṽxṽz〉 then becomes:

〈ṽxṽz〉 = −χz
dv̄z
dx
− σV T c

2
s〈l2mix〉
L‖

.
∇n̄
n̄

(30)

The first term in eq.(30) is the diagonal stress and is proportional to χz = 〈l2mix〉/τc. The

second term represents the parallel residual stress:

Πres
xz = −σV T c

2
s〈l2mix〉
L‖

.
∇n̄
n̄

(31)

The parallel Reynolds stress can then be written as:

〈ṽxṽz〉 = −χz
[dv̄z
dx

+
σV T c

2
slmix

ṽxL‖n̄
.
dn̄

dx

]
(32)

A comparison of eq.(27) and eq.(30) shows that the correlator 〈kmkz〉 is equal to:

〈kmkz〉
[ lmix√

fε
+
ρ2sk

2
⊥

α

]
= −σV T∇n̄

n̄
.
〈l2mix〉
L‖ρscs

(33)
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Eq.(33) shows that σV T is the counterpart of the correlator 〈kmkz〉. This constant σV T can

be written as:

σV T =
〈kmkz〉
〈k2⊥〉1/2/L‖

(34)

where both L‖ and the radial wavenumber 〈k2⊥〉1/2 can be determined empirically. σV T

captures the cross-phase information between ṽx and ṽz, and determines whether the parallel

Reynolds power density −〈ṽxṽz〉∇v̄z is an energy source or sink in eq.(4). σV T also represents

the degree of symmetry breaking in the correlator 〈kmkz〉, and quantifies the efficiency of ∇n̄

in driving an axial flow. For turbulence-driven axial flows, with no axial momentum input,

the parallel Reynolds stress vanishes, and the net axial flux is equal to zero: 〈ṽxṽz〉 = 0.

The relation between the axial velocity shear and the density gradient must be:

∇v̄z = −σV T c
2
sτc

L‖n̄
∇n̄ (35)

Eq.(35) can be used to determine empirically the value for σV T , as τc is experimentally

measurable.

One can also relate the variations in ∇v̄z to those in the azimuthal shear ∇v̄y via σV T .

For a zero net vorticity flux: 〈ṽx∇2
⊥φ〉 = 0, and the diffusive and the residual components

of the vorticity flux are at balance:

χy
d2v̄y
dx2

= Πres
xy ∝ ∇n̄

Using eqs.(22) for χy and Πres
xy in the near adiabatic limit, as well as the scaling of eq.(35),

we obtain the following relation:

d

dx
∇v̄y =

ωciL‖
σV T c2sτc

∇v̄z (36)

Eq.(36) shows then how parallel and perpendicular flow dynamics are coupled. It also

explains how the azimuthal shearing ∇v̄y limits the axial plasma response to the parallel

residual stress Πres
xz . As ∇v̄y increases, turbulence is suppressed, and v̄z decreases. This in

turn causes σV T to decrease, thus reducing the acoustic coupling.
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V. THE RADIAL MIXING LENGTH lmix

A solution of the coupled drift-ion acoustic wave system requires an expression for the

radial turbulent mixing length lmix. In 2-D turbulent systems, the Rhines’ scale, lRh, defined

as the scale beyond which the inverse energy cascade terminates, emerges as an appropriate

mixing length42. Turbulence simply changes character for l > lRh, and the plasma dynamics

evolve from a turbulence cascade regime to wave like behavior. In CSDX, the plasma

system does not exhibit a sufficiently large dynamical range of energy transfer to observe

this transition in turbulence dynamics36,43. Therefore, the significance of the Rhines’ scale

is unclear in this experiment. As mixing is regulated primarily by shearing in CSDX, a scale

length that accounts for turbulence suppression due to coupling between radial fluctuations

and sheared azimuthal and axial flows is suggested.

A. Case of a purely azimuthal shear

In the case of mean azimuthal shears, the following form of mixing length is suggested44:

l2mix =
l20[

1 + (v̄′
y)

2τ 2c

]δ (37)

Here δ is the suppression parameter, τc is the fluctuation correlation time, and l0 is the

mixing scale for turbulence in CSDX in the absence of shear flow. When the azimuthal

shearing rate is greater than the fluctuations growth rate: v̄′y > |γm|, turbulent eddies are

decorrelated and turbulence is suppressed. Coupling between the azimuthal shearing and

the turbulent radial scattering of fluctuations can quench turbulence and decrease lmix. An

empirical relation for the scale length of turbulence l0 = [(k̄2r)
1/2]−1 is found by expressing

the inverse radial wave number k−1r as a function of the density fluctuations ñ normalized

by the average plasma density n̄42:

l0 ' 2.3ρ0.6s L0.3
n (38)
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This suggests that the CSDX turbulent plasma diffusion coefficient scales like:

DCSDX ' DBρ
0.6
? (39)

where DB is the Bohm diffusive coefficient, and ρ? is the ion gyroradius normalized by the

inverse density gradient scale length: ρ? = ρ/Ln. Eq.(39) suggests that the scalings of

diffusion in CSDX fall in between the Bohm and gyroBohm diffusion scalings. For τc, we

write:

1/τc =
(
k2m(v

′

y)
2χy

)1/3
(40)

where the wavenumber is km ' 1/l0 and the turbulent diffusivity is χy = τc〈δv2x〉 = τcfε.

The correlation time is then:

τc =
[(v′y)

2fε

l20

]−1/4
and the mixing length becomes:

l2mix = l20

[
1 +
|v′y|l0√
fε

]−1
(41)

The structure of eq.(41) shows an intuitively plausible inverse relation between the shear

and the mixing length.

B. Case of azimuthal and axial shear

When both axial and azimuthal shear are present in the system, and when the azimuthal

shear rate is greater than the radial correlation rate: v̄′y >
√
fε/l0, the expression for the

mixing length becomes:

l2mix =
l20[

1 +
(
kmv̄

′
y + kzv̄′z

)2
τ 2c

] (42)

Here the wavenumbers can be chosen as: km = 1/l0 and kz = 1/L‖. The expression for the

mixing length is:

l2mix = l20

[
1 +

( v̄′
y

l0
+
v̄′z
L‖

)2 l20
fε

]−1
(43)

The structure of eq.(43) is not significantly different from that of eq.(41). Both expressions

show that lmix is inversely proportional to v̄′y/v̄
′
z: as the shear grows, the mixing length lmix
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shrinks. This in turn reduces the turbulent energy ε, and increases the mean energy because

of total energy conservation. In CSDX, the effective mean azimuthal shear v̄′y dominates the

mean axial shear v̄′z.

VI. SUMMARY AND DISCUSSION OF THE MODEL

In summary, the model consists of the equations:

∂n̄

∂t
= − ∂

∂x
〈ṽxñ〉+Dc

∂2n̄

∂x2
+ Sn (44a)

∂v̄z
∂t

= − ∂

∂x
〈ṽxṽz〉+ νc,‖

∂2v̄z
∂x2

+ Svz (44b)

∂v̄y
∂t

= − ∂

∂x
〈ṽxṽy〉+ νc,⊥

∂2v̄y
∂x2

− νin(v̄y − v̄n)− νiiv̄y + Svy (44c)

∂ε

∂t
− ∂x(lmixε1/2∂xε) = −〈ñṽx〉

dn̄

dx
− 〈ṽxṽz〉

dv̄z
dx
− 〈ṽxṽy〉

dv̄y
dx
− ε3/2

lmix
+ P (44d)

The expressions for the turbulent fluxes and the Reynolds power density are:

〈ñṽx〉 = −fε
α
.
k2⊥ρ

2
s

1 + k2⊥ρ
2
s

.
1

n0

dn̄

dx
(45a)

−∂〈ṽxṽy〉
∂x

= −lmix
√
fε
d2v̄y
dx2
− lmix

√
fεωci

Ln
(45b)

−〈ṽxṽy〉
dv̄y
dx

= −lmix
√
fε
(dv̄y
dx

)2
− v̄y

lmix
√
fεωci

Ln
(45c)

〈ṽxṽz〉 = −lmix
√
fε
dv̄z
dx

+ 〈kmkz〉ρsc3s
[ lmix√

fε
+
ρ2sk

2
⊥

α

]
(45d)

= −lmix
√
fε
dv̄z
dx
− σV T c

2
s〈l2mix〉

L‖Ln
(45e)

Here lmix and f are given by eq.(43) and eq.(15) respectively. The model evolves the fields

n̄, v̄y, v̄z and ε in space and time (x, t) using a slowly varying envelope approximation. In

addition, the model self consistently relates the evolution of turbulence to that of the paral-

lel and perpendicular flow dynamics. The coupling terms associating the turbulent energy

to variations of the mean profiles n̄, v̄y and v̄z, are expressed in terms of a mixing length
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lmix, the expression for which depends on both axial and azimuthal shear (eq.(43)). The

particle flux is purely diffusive: 〈ñṽx〉 = −D∇n̄. Both parallel and perpendicular Reynolds

stresses consist of a diffusive part (−χz∇v̄z and −χy∇v̄y), as well as a residual component

proportional to ∇n̄ that generates an axial and an azimuthal flow.

The generated axial flow is associated with the correlator 〈kmkz〉 6= 0 that measures the

acoustic coupling. A version of this model introduces the empirical constant σV T in the ex-

pression for 〈kmkz〉 (eq.(31)). This experimentally measurable constant relates the variations

of the axial shear to those of the density gradient, via eq.(35). It also shows how free energy

released from the density gradient can accelerate v̄z, even in the case of no axial momentum

input. In addition, this constant accounts for the strength of the parallel to perpendicular

flow coupling as: σV T ∼ 〈ṽxṽz〉 ∼ 〈kmkz〉. This coupling is stated in eq.(36), which relates

v̄′z to v̄′y since both shears are dependent on the density gradient ∇n̄. Finally, we note that

this model manifests the well known relation between turbulence and azimuthal flows via

the Reynolds stress 〈ṽxṽy〉 and also manifests a similar relation between fluctuations and

axial flows via the parallel Reynolds stress 〈ṽxṽz〉. Numerical solutions of this model will be

published in a future work.

VII. REDUCING THE MODEL

When the eddy turnover time τc = lmix/ṽx is smaller than the confinement time τconf =

[n̄−1D∇2n̄]−1, the model can then be reduced to a 3 field model by slaving the expression

for ε to the mean profiles, and solving the equations for n̄, v̄y and v̄z. Experimental results

from CSDX show that the energy transfer to the axial flow via the parallel Reynolds power

density:
∫
−∂x〈ṽxṽz〉v̄zdx, i.e., the power exerted by turbulence on the axial flow, is less than

that exerted on the azimuthal profile via:
∫
−∂x〈ṽxṽy〉v̄ydx, by a factor of five32,33. The axial

flow then can be considered as parasitic to the system of ∇v̄y and ∇n̄. The model can be

reduced even further, to 2 fields, by neglecting the axial flow equation v̄z, and solving the

density and azimuthal flow equations using the stationary slaved expression for ε obtained

from the equation for the mean fluctuating energy.
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A. Equations and Fluxes

In this reduced model, one would still use the equations:

∂n̄

∂t
= − ∂

∂x
〈ṽxñ〉+Dc

∂2n̄

∂x2
+ Sn (46a)

∂v̄y
∂t

= − ∂

∂x
〈ṽxṽy〉+ νc,⊥

∂2v̄y
∂x2

− νin(v̄y − v̄n)− νiiv̄y (46b)

We note here that, unlike tokamaks where there is a clear scale separation: a ≥ Ln ≥

lmix > ρs, the scale ordering in CSDX is compressed: a > Ln ' lmix ≥ ρs. Here a is the

radus of the plasma. In addition, when
√
ε/lmix < (D∇2n̄)/n̄, a steady state solution of the

energy equation generates an expression for ε, which can be used in both n̄ and v̄y equations.

The predator-prey model thus obtained describes turbulence suppression and azimuthal flow

evolution, where the flow v̄y feeds on the density gradient ∇n̄. An interesting feature of this

model is that, unlike the model of ref.45, the fluctuations intensity is not treated as an ad

hoc constant, but rather evolves self consistently, albeit adiabatically (i.e. slaved to n̄ and

v̄y). The shear ∇v̄y and ∇n̄ evolve in time, allowing for the level of fluctuation intensity

to vary as well. In the near adiabatic electron limit, the expressions for the particle and

vorticity fluxes are:

Γ = −εf
2

α

d lnn

dx
= −Dd lnn

dx
(47a)

Π = −
√
fεlmix

d2v̄y
dx2

+
lmix
√
fεωci

Ln
= −χy

d2v̄y
dx2

+ Πres (47b)

Here f = k2⊥ρ
2
s/(1 + k2⊥ρ

2
s) and lmix is given by eq.(41).

B. Closure by Slaving

For slaved turbulence, both the energy spreading and the energy production terms are

neglected, because the eddy turnover time is shorter than the confinement time. Using

eq.(24) for the Reynolds power, the fluctuation turbulent energy equation is:

−Γn
dn̄

dx
+ χy(

dv̄y
dx

)2 − v̄yΠres − ε3/2

lmix
= 0 (48)
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with χy and Πres given above. Solution of this equation gives:

ε = −ρ2s
(dv̄y
dx

)2 +
l20
4

[
f 2

α

(dn
dx

)2
+
√
Θ

]2
(49)

where

Θ =

[
f 2

α

(dn̄
dx

)2]2
+ 4f

[(dv̄y
dx

)2
− v̄yωci

dn̄

dx

]
(50)

One can thus use eq.(49) in the expressions for Γ and Π to close this reduced 2-field model.

We note here that, in contrast to the model of ref.45, the fluctuation level evolves in time.

The reduced model then presents a coherent description of turbulence and mean profiles,

without imposing a fixed level of turbulence. Solutions of this reduced model can be found by

numerically solving the equations for n̄ and v̄y, while taking into account the corresponding

expressions for lmix.

VIII. CONCLUSION

This paper presents a 4-field reduced model that describes the evolution of turbulence

and mean profiles in the cylindrical drift-ion acoustic plasma of CSDX. The model studies

the spatiotemporal evolution of the parallel and perpendicular flow dynamics, as well as the

variations of the fluctuation intensity ε. Also, the model fills the gap in approach between a

0-D 2-field reduced model (n̄ and v̄y), and a DNS of the three primitive equations. Moreover,

this reduced model yields a better physical interpretation for the mesoscopic results observed

in CSDX, while avoiding the computational cost of a full 4-field DNS.

A self-consistent description of the variations of three mean fields: density n̄, azimuthal

flow v̄y, and axial flow v̄z, in addition to the fluctuation intensity ε is presented here. Con-

servation of the total (mean + turbulent) energy, including dissipation and internal energy

production, is a key element. Due to acoustic coupling, 〈ñ2 + (∇⊥φ̃)2 + ṽ2z〉 is the conserved

energy field. Because mixing occurs primarily by shearing in CSDX, the model employs a

mixing length that is inversely proportional to both axial and azimuthal flow shear (eq.(43)).

However, we note that in CSDX, v̄′y > v̄′z. The choice of a mixing length that is inversely

proportional to the shear closes the loop on the total energy, and allows development of

improved confinement in CSDX. Key elements of the model and its predications of experi-
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mental findings are:

1. Evolution of the profiles, including mean flows and turbulent stresses, in a cylindri-

cal plasma characterized by a constant magnetic field. The model explains how an

increase in the magnitude of B decreases the scale of turbulent transport and steep-

ens the density profile. Free energy released from ∇n̄ accelerates then the azimuthal

plasma flow v̄y, as verified experimentally36. The current model is an extension of

that presented in ref.42, where the predator/prey relation between DWs and ZFs was

derived and validated.

2. In the DW dominated plasma of CSDX, a test axial flow shear breaks the parallel

symmetry, which results in a residual stress Πres
xz ∝ ∇n̄ and an axial flow v̄z. Energy

released from ∇n̄ also accelerates v̄z via the parallel Reynolds stress 〈ṽxṽz〉. This trend

is in agreement with the experimental results32,33, and supports the analogy between

the plasma and an engine39. The model thus unfolds a coupling relation between v̄z

and v̄y, as both flows are accelerated by the same free energy source.

3. The model reduces the evolution of plasma profiles to three fluxes: a particle diffusive

flux, as well as a parallel and perpendicular Reynolds stress with residual components

Πres
xz and Πres

xy . These fluxes regulate the transfer of energy between fluctuations and

mean flows and governs the ecology of flows and drift wave turbulence.

4. The model introduces an empirical constant σV T that measures the correlator 〈kmkz〉 =∑
m kmkz|φ̃|2. This correlator encodes the broken symmetry of turbulence, and quan-

tifies the efficiency of drift waves in driving Πres
xz and v̄z through eq.(35). Because σV T

measures the cross phase relation between ṽx and ṽz, it determines the direction of

energy transfer between turbulence and axial flow.

5. Eq.(35) provides an expression for the critical density gradient necessary for onset of

an axial flow shear ∇v̄z. By balancing the residual and the diffusive components of

the parallel Reynolds stress, we obtain:

∣∣∣∇n̄crit
n̄

∣∣∣ =
k2zv

2
th

νei

ω?L‖
〈kmkz〉ρsc3sτc
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where τc is the correlation time. The model thus explains why a sheared v̄z flow was

observed only above a critical B value in CSDX, i.e., beyond a critical density gradient.

6. Through eq.(36), the model provides a direct expression for the parallel to perpendic-

ular flow coupling that is reported experimentally in refs.32,33. Because χy = χz, and

since both Πres
xy and Πres

xz are proportional to ∇n̄, the relation:

d(∇v̄y)/dx
∇v̄z

=
Πres
xy

Πres
xz

=
ωciL‖
σV T c2sτc

is established, and σV T is interpreted as a measure of the magnitude of coupling

between ∇v̄y and ∇v̄z.

7. According to eq.(39), turbulent diffusion in CSDX does not follow Bohm scaling.

Scalings of turbulent diffusion in both CSDX and larger devices characterized by higher

temperature follow the same trend46,47

When the axial to azimuthal flow coupling is weak, the axial flow is mainly driven by the

turbulent Reynolds stress, particularly by the parallel residual part. The reduced 4-field

model can thus be simplified to a 2-field predator-prey model which evolves v̄y and n̄. In

CSDX, probe measurements show that the magnitude of v̄z is moderate, and that the parallel

Reynolds power is much less than that in the perpendicular direction. Measurements also

indicate a weak coupling between v̄y and v̄z
32,33. This is consistent with the observation

that ∇v̄y � |ω| (i.e. moderate azimuthal flow) and the absence of transport barriers,

because of a decoupled v̄z from v̄y. Analytically, in order to simplify the model, a slaved

expression for ε is replaced in the equations for density and azimuthal flow. In contrast to

the model in ref.45 which treats the fluctuations as an ad hoc constant, both the fluctuations

and the shear evolve in this new predator-prey model. An investigation of the numerical

results obtained from such a 2-field reduced model is planned as a future work. The theory

suggests the formation of zonal flows is the key part of turbulence regulation, with axial

flows as parasitic. 〈ṽ2x fluctuations can be determined using eq.(49), and then used to obtain

v̄z(x) via eq.(44b).

Future work also includes an investigation of the numerical results obtained by simulation of

the reduced 4-field model, while using appropriate boundary conditions and initial profiles.

These results will elucidate the details of the acceleration of axial flow, and the coupling
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between v̄y and v̄z. Numerical results will also confirm the existence of a critical density

gradient ∇n̄|crit necessary for the onset of the axial flow shear ∇v̄z. The possibility of the

emergence of a staircase in this 4-field model can be examined. Such crucial step is essential

to understand the evolution of mesoscale structures that condense to form macroscopic

barriers in the density profile.

Finally, future work in CSDX includes adding both a particle source as well as an external

axial momentum source. These two sources enhance the interactions between the flows and

turbulence in the plasma, leading thereby to further coupling between v̄y and v̄z according

to the mechanism illustrated in fig.3. However, the azimuthal Reynolds power is much larger

than the axial Reynolds power, so one may regard the axial flow evolution as parasitic to

the drift wavezonal flow system. This is consistent with the observation that V moderate

azimuthal flow shear) and thus there is no transport barrier.
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