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Plasma, Fusion, and Tokamaks

• Nuclear Fusion
• Typically, deuterium—tritium (D—T) reaction is 

designed to be used for fusion energy
• Require extremely high temperature 

• 14 keV or 160 million K
• Neutral gas à hot plasma 

• Tokamak
• Main magnetic field in toroidal direction
• Turbulent transport reduces energy confinement
• Self-organization of turbulence mitigates transport

• Turbulence-driven plasma flows in both toroidal and 
poloidal directions

à Control knob to manipulate turbulence state?
Schematic of a tokamak plasma
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Plasma turbulence and flows in a cylinder
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Self-organization of a turbulence—flow system
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Turbulence-generated flows in fusion plasmas
• In magnetic fusion plasmas, turbulence generates flows in both 

parallel and perpendicular directions to the magnetic field
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Motivation of this thesis
• Turbulence-generated parallel flows + weak magnetic shear

à better confinement of fusion plasmas, e.g., JET experiments

• Conventional mechanisms of intrinsic parallel flow generation usually rely on geometrical 
mechanisms for symmetry breaking (i.e., related to magnetic shear, toroidicity, etc.)

à How does turbulence generate parallel flows at weak to zero magnetic shear?

• Turbulence generates flows in orthogonal directions (i.e., parallel and perpendicular to 
magnetic fields)

à What couples the intrinsic parallel and perpendicular flows (in absence of magnetic shear)?



Overview of results in this thesis

• New mechanism to generate intrinsic parallel flows in simple, straight geometry
• Develop the new theory for flow generation by both electron drift wave turbulence and ITG (ion 

temperature gradient) turbulence

• These theoretical results motivate detailed measurements in a linear device with 
uniform magnetic fields (i.e., CSDX), including:
• Dynamical symmetry breaking in turbulence 
• Generation of macroscopic axial flows
à Experimental measurements support the theory

• Coupling of intrinsic axial and azimuthal flows in CSDX via turbulent production and 
Reynolds forces

• Also: frictionless saturation of zonal flows



Publications
� Intrinsic axial flow generation and saturation in CSDX:

� J. C. Li, P. H. Diamond, X. Q. Xu, and G. R. Tynan, “Dynamics of intrinsic axial flows in unsheared, uniform 
magnetic fields”, Physics of Plasmas, 23, 052311, 2016.

� J. C. Li and P. H. Diamond, “Negative viscosity from negative compressibility and axial flow shear 
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� Phenomenology of intrinsic flows in CSDX:
� R. Hong, J. C. Li (joint first author), R. J. Hajjar, S. Chakraborty Thakur, P. H. Diamond, G. R. Tynan, 

“Generation of Parasitic Axial Flow by Drift Wave Turbulence with Broken Symmetry: Theory and 
Experiment”, submitted to Physics of Plasmas. 

� Interaction of intrinsic axial and azimuthal flows in CSDX:
� J. C. Li and P. H. Diamond, “Interaction of turbulence-generated azimuthal and axial flows in CSDX”, 
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� Frictionless zonal flow saturation:
� J. C. Li and P. H. Diamond, “Frictionless Zonal Flow Saturation by Vorticity Mixing”, submitted to Physical 

Review Letters.
� J. C. Li and P. H. Diamond, “Another Look at Zonal Flow Physics: Resonance, Shear Flows and Frictionless 

Saturation”, submitted to Physics of Plasmas. 



Outline

• Background
• Flows and intrinsic rotation in fusion plasmas
• Flows in a linear device CSDX

• Main content:
• Intrinsic axial flow generation in CSDX
• Interaction of intrinsic axial and azimuthal flows in CSDX
• Lessons learned and future direction

• Also: frictionless zonal flow saturation
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Zonal (poloidal) flow
• Mesoscopic shear flow layers driven by turbulence
• Occurs in a wide range of fluid systems
• Decorrelate the turbulent eddies by shearing

à Reduce turbulence and transport in tokamaks

Zonal flows (bands) in 
atmosphere of Jupiter

Zonal flow shearing reduces 
eddy size in tokamak 
simulation: (a) with zonal 
flow, (b) no zonal flow

10[Diamond et al, PPCF 2005]



Theoretical understanding of zonal flows
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Drift wave (prey):

11[Diamond et al, PRL, 1994]

• Schematic of predator—prey model for zonal flows



• Macroscopic shear flows in the direction parallel to the main (toroidal) magnetic field in a tokamak

• External torque insufficient to spin up plasma of larger size (e.g., ITER) à Intrinsic torque is desired

• Weak magnetic shear AND toroidal rotation à de-stiffened heat flux profile vs. ∇"
• So need understand: intrinsic rotation in weak shear regimes

Intrinsic toroidal rotation

• Important for:

• Calculate total effective torque 

# = #%&' + #)*'+
• Contribution to ,-×/0

à enhance confinement

12
[Mantica et al, PRL, 2011]



Generation of intrinsic parallel flow

• Heat engine analogy

Car Intrinsic Rotation
Fuel Gas Heating à !", !$%
Conversion Burn !", !$% driven turbulence
Work Cylinder Symmetry breaking à residual stress
Result Wheel rotation Flow

• Intrinsic parallel flow is driven by Reynolds force: &'(∥ ∼ −&, -., -.∥
• Reynolds stress: -., -.∥ = −0∥(∥1 + Π,∥456
• Residual stress requires symmetry breaking: Π,∥456 ∼ 787∥ = ∑: 787∥ ;: <



!

"

Problem of conventional wisdoms of intrinsic 
parallel flow generation
• Conventional wisdom of intrinsic parallel flow generation

- Π$∥&'( ∼ *+*∥ requires symmetry breaking in *+ − *∥ spectrum

- In tokamaks, with finite magnetic shear: 
*∥ = *+ ⁄" /(à *+*∥ ∼ *+0 ⁄〈"〉 /(

- 〈"〉: averaged distance from mode center to rational surface
- " is set, in simple models, by 3$4 , 54, etc. 

• What of weak shear?
• /( → ∞, so *+*∥ ∼ *+0 ⁄" /( → 0

14
[Gurcan et al, PoP, 2007]



CSDX: Controlled Shear Decorrelation Experiment
• Goal: study intrinsic parallel flow generation at zero magnetic shear

• What breaks the symmetry in turbulence?

• Device characteristics:

• Straight, uniform magnetic field in axial direction à magnetic shear = 0

• Diagnostics: Combined Mach and Langmuir probe array 

• Argon plasma produced by RF helicon source at 1.8 kW and 2 mtorr

• Insulating endplate avoid strong sheath current

Heating
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CSDX: Promising testbed for drift-wave physics

Parameters Tokamak Boundary CSDX

<∗ = <? @A⁄ ∼ 0.1 ∼ 0.3
4∥G:H'G IJ'⁄ ∼ 0.5 − 5 ≳ 1
M'- @NOPP⁄ ≲ 1 ∼ 0.1 − 0.3
RNO$/<( ≲ 1 ∼ 1

• Some dimensionless parameters show similarity between linear device and 
Tokamak SOL region

• CSDX can serve as a testbed for studying drift-wave-driven residual stress 
and intrinsic axial flow

CSDX correspondence to tokamaks
• Parameters similar to SOL region of tokamaks
• Intrinsic axial (↔ toroidal) and azimuthal (zonal) flows
• Testbed to study drift wave—zonal flow—axial flow ecology
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Characterization of turbulence—flow ecology 
in CSDX

• Heat engine analogy for intrinsic flow generation
• Branching ratio of intrinsic axial and azimuthal (zonal) flows

à Ratio of Reynolds power !"/!$, where !" = − '() '(" *+", !$ = − '() '($ *+$
• Parasitic axial flow riding on drift wave–zonal flow system

• Zonal flow regulates turbulence
• ,"+"* ≪ ,$+$* à Weak coupling between axial and azimuthal flows

+" *

./0

+$ *

TurbulenceParticle 
source

!" ≪ !$
Shear regulation
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Intrinsic flows in CSDX: phenomenology
• !"#, !$# ∼ ∇'à Rice-type scaling: Δ )* ∼ +,
• Reynolds power: 

-" = − 0)1 0)" #!", -$ = − 0)1 0)$ #!$

18[Rice et al, PRL, 2011]



Issues and relevant questions

• What generates the axial flow absent magnetic shear?
- Conventional theories are often tied to finite magnetic shear
à need a new mechanism

• How does the axial flow saturate?
- Interplay of new generation mechanism and conventional ones
- Stiffness of !∥# profile vs. ∇%

• How does axial flow interact with azimuthal flow?
- Coupling of intrinsic parallel and perpendicular flows absent geometrical coupling
- Branching ratio of intrinsic axial and azimuthal flows
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Intrinsic axial flow generation and 
saturation in drift wave turbulence
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Key takeaways

• Dynamical symmetry breaking in drift wave turbulence:
• A seed axial flow shear breaks the spectral symmetry in !"!# space
• Resulting residual stress induces a negative viscosity increment
• When total viscosity turns negative, the seed shear is reinforced by modulational instability

• Modulational growth of axial flow shear is limited by PSFI (parallel shear flow 
instability) saturation à $#% saturates at or below PSFI threshold
• Measurement of symmetry breaking of microscopic fluctuation spectrum 

confirms this new theory



Equations for Electron Drift Wave
• System equations:
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• Non-adiabatic electrons: #$ ≅ 1 − 9: +
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• Growth rates of linear modes are calculated using the dispersion relation:
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• How does a seed axial flow shear affect the growth rate?



Infinitesimal test axial 
flow shear, e.g. 
! "# $ < 0

Modes with '('# < 0
grow faster than other 

modes, 
)*|*,*-./ > )*|*,*-1/

Spectral imbalance in '('#
space

'('# < 0à Π3#456 < 0

• Drift wave growth rate ~ frequency shift: 

Dynamical Symmetry Breaking
• Spectral imbalance:

k#

k#

k(

: {'+}
: {'−}

0

<* =

0

Spectral
imbalance

{'±}: Domains where modes grow faster/slower

Spectral imbalance 23



Residual stress induces a negative viscosity increment

• !Π#$%&' = )*+,- !〈/$〉′

• Reynolds stress:

• Turbulent viscosity driven by drift waves: 

• Residual stress à Negative viscosity increment

24

Total viscosity: )*232 = )* − )*+,-

• Self-steepening of seed flow shear à negative viscosity phenomena



Modulational enhancement of !〈#$〉′

• !〈#$〉′ amplifies itself via modulational instability

• '()*) = '( − '(-./ < 0à Modulational growth of !〈#$〉′

• Feedback loop: !〈#$〉′à !Π3$456 à− '(-./

• Dynamics of !〈#$〉′ : 
7
78 ! #$

9 + 7;
7<; !Π3$456 − '(! #$ 9 = 0

• Growth rate of flow shear modulation
=> = −?3; '( − '(-./
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Self-steepending of !" # limited by PSFI

$%&'& = $%)* + $%,-./Θ !" # − !" 234&
# − $%/52

$%&'& = $%)* + $%,-./ − $%/52 > 0$%&'& = $%)* − $%/52 < 0

26

• Parallel shear flow instability (PSFI) keeps $%&'& positive 

à limit modulational growth of seed flow shear



Compare new mechanism to conventional models

• Feedback Loop:

Dynamical Symmetry Breaking
Conventional Models

27

PSFI

VS. • Open Loop:



Measurement of symmetry breaking in CSDX

∇" increases

• Motivated by theoretical findings on symmetry breaking
• Joint PDF # $%&, $%( empirically represents spectral correlator )*)(

• $%& ∼ ,* -. ∼ )* -. and $%( ∼ ,( $/ ∼ )( -.
• Spectral asymmetry à )*)( ≠ 0à residual stress ≠ 0
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Partial summary: intrinsic axial flow generation absent 
magnetic shear

• For drift wave turbulence in CSDX:
• Seed flow shear ! "# $ à Negative viscosity increment induced by Π&#'()
• !Π'() = +,'() ! "# $ à Total viscosity: +,-.- = +, − +,'()
• +,-.- < 0à Modulational growth of ! "# $

• Axial pressure gradient (plasma hot near the source and cold near the outlet)
à Seed axial flow shear à Self-amplification à Saturated by PSFI

• Measurements on CSDX confirm this new mechanism
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Results not presented here

• Stationary axial flow shear profile
• Momentum budget of a pipe flow

• Effects of neutral flows
• Impact of boundary dynamics on the intrinsic axial flow profile

• Related papers:
• J. C. Li, P. H. Diamond, X. Q. Xu, and G. R. Tynan, “Dynamics of intrinsic axial flows in 

unsheared, uniform magnetic fields”, Physics of Plasmas, 23, 052311, 2016.
• R. Hong, J. C. Li (joint first author), R. J. Hajjar, S. Chakraborty Thakur, P. H. Diamond, G. R. 

Tynan, “Generation of Parasitic Axial Flow by Drift Wave Turbulence with Broken Symmetry: 
Theory and Experiment”, submitted to Physics of Plasmas. 
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Intrinsic axial flow generation and 
saturation in ITG turbulence
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Why study ITG turbulence?

• ITG = ion temperature gradient
• ITG is the major turbulence type in confinement devices
• Major contributor to momentum transport

• Ion features in CSDX observed (not necessarily ITG turbulence)
• Fluctuations propagating in ion drift direction

32



Ion Features in CSDX
• Coexistence of ion and 

electron features

33

• !" profile steepening

Electron drift 
direction

Ion drift 
direction



Issues of intrinsic axial flow in ITG regime

• Intrinsic axial flow in ITG (ion temperature 
gradient) turbulence at zero magnetic shear?
• Does ITG turbulence induce negative viscosity?
• Can seed axial flow shear amplify via modulational

instability?

• How does !∥# saturate in ITG turbulence?
• What is the profile stiffness, i.e., !∥# ∼ ∇&' (?

• How is it compared to the case where ) = 1, i.e.,
Rice-like scaling?

34



Key takeaways

• Dynamical symmetry breaking does not drive intrinsic axial flow in ITG 
turbulence with zero magnetic shear
• Total viscosity is positive definite
• Seed flow shear cannot reinforce itself

• In ITG turbulence, axial flow shear can saturate significantly above the 
linear threshold for PSFI
• !"∥ ∼ !%& ⁄( ) as compared to Rice-type scaling !"∥ ∼ !%&



Model of ITG turbulence

• Fluid model of ITG turbulence

36

• Landau damping closure:
(Hammett and Perkins, PRL, 1995)

• 2 free energy sources: !"∥ and !$%
• Magnetic shear = 0

à No correlation between parallel and 
perpendicular directions

!"∥ and !$% are 
coupled nonlinearly

Coexistence of PSFI and ITG instability



Negative viscosity induced by ITG turbulence

• In ITG turbulence, !"∥$ cannot self-amplify
• Negative viscosity increment: %&'() < 0
• Total viscosity positive: %&,-, = %&/01 − %&'() = 3

4 %&
/01 > 0

• Evolution of a test flow shear set by
6,!"∥$ = %&,-,673!"∥$ à 89 = −%&,-,:73 < 0à !"∥$ cannot reinforce itself!

37

ITG turbulence Drift Wave turbulence
Sign of residual stress ;<;∥ "∥$ > 0 ;<;∥ "∥$ > 0
Viscosity increment %&'() < 0 %&'() < 0
Total viscosity %&,-, > 0 %&,-, can be negative

Self-amplification of !"∥$ No Can exist



Intrinsic flow profiles driven by ITG turbulence
• Π"∥$%& set by conventional models

• Intrinsic flow profile: '∥( ∼ *Π"∥
$%& +,

-.-

• /'∥( à /Π"∥
$%& à +,

$%&

• Thus, total viscosity: 
+,
-.- = +,

123 + +,
5671 + +,

$%&

38

• Regimes in 8'∥–89: space:
(1) Marginal regime: ;< ≳ 0
(2) ITG dominant regime

?∥ @2
⁄B C

?∥ @D
<

3

2 ⁄B C

H&
'∥

A ⁄J C

?KL& ⁄J CM ⁄J C

(3) PSFI dominant regime
?∥ @2

⁄B C

?∥ @D
>

3

2 ⁄B C

H&
'∥

A ⁄J C

?KL& ⁄J CM ⁄J C

(4) Stable regime: ;< < 0



!∥# profile saturated by PSFI

39

Additional flow drive 
+ Intrinsic drive by 

ITG turbulence

!∥# hits PSFI 
regime boundary 

PSFI saturates !∥#

$!∥ ∼ $&' ⁄) *



Partial summary: axial flow generation and saturation in 
ITG turbulence

• Negative viscosity increment by ITG 
smaller than turbulent viscosity
• Total viscosity positive, i.e.,

!"#$% = !"'#( − !"*+, > 0
à No intrinsic rotation by ITG turbulence

• Flow saturation by PSFI
• /0∥ saturates above PSFI linear threshold
• Generalized Rice scaling: /0∥ ∼ /34 ⁄6 7

40



Results not presented

• What happens to marginal regime?
• ITG turbulence is usually marginal in the edge region of tokamak

• How does !"∥ affect the ITG turbulence? 
• Both parallel shear flow instability and ITG instability are negative compressibility 

phenomena à !"∥ enhances ITG turbulence

• Related paper:
• J. C. Li and P. H. Diamond, “Negative viscosity from negative compressibility and axial flow 

shear stiffness in a straight magnetic field”, Physics of Plasmas, 24, 032117, 2017.
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Interaction of intrinsic axial and azimuthal 
flows in CSDX
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• Motivation:

– (1) Heat engine analogy à Branching ratio ⁄"#$ "%$? 

– (2) Parasitic &#, '#&#( ≪ '%&%(
à How does &%( affect intrinsic &# generation?

Interaction of axial and azimuthal flows

• Recall turbulence—flow ecology in CSDX:

&# (

*+,

&% (

TurbulenceParticle 
source

"# ≪ "%
Shear regulation
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Key takeaways

• Intrinsic axial and azimuthal flows interact through turbulent production 
and axial residual stress
• Azimuthal flow shear reduces axial residual stress
• Intrinsic axial flow saturates below PSFI threshold

à Consistent with measurements in CSDX
à Turbulent diffusion of axial momentum saturates the axial Reynolds power



Method: incremental study

• Analogous to perturbation experiments
• External flows: ignore feedback of turbulence-generated flows on the flow shear profile

• Fix one flow shear and increase the other à solve for eigenmode

• Calculate ratio of Reynolds powers !"# "$ for a single eigenmode

%
%& ' + )*

∇',
',

= %∥/#0 ' − 2
%
%& 34

02 + )*5$66 = %∥/#0 ' − 2
%
%& )# + )*5#

6 = −/#'
%
%& =

/
/& + 5$/$ + 5#/#

• Drift wave + azimuthal flow shear (5$6) + axial flow shear (5#6):
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Result (1): !"# reduces generation of intrinsic !$
• Ratio %&$ &" decreases with !"#
à !"# reduces generation of !$, i.e., '() '($ ∼ !"#

+,

à Competition between !" and !$
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Result (2): Intrinsic !" saturates below PSFI threshold
• Increase	!"+ à ,-" -. first increases and then decreases

à Turnover because −0"!"+ contribution increases faster than Π2"345 contritution

à -" ∼ 782 78" !"+ = Π2"345!"+ − 0" !"+ :
à Intrinsic !" saturates below PSFI threshold
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Drift wave is the primary turbulence population

• KH is negligible
• !"## drive weaker than $%& drive 
à '"()*!"## ≪ ,∗.

48

• $!/ in CSDX is well below  the 
PSFI linear threshold

à PSFI stable in CSDX

• Other potential drives:
– !"## à Kelvin-Helmholtz (KH) instability 
– $!/ à Parallel shear flow instability (PSFI) 

CSDX

Drift 
wave

PSFI regime



Results not presented here

• Effects of azimuthal flow shear on the intrinsic axial flow
• !"# reduces the modulational growth of seed axial flow shear 
• !"# does not affect the stationary axial flow profile, to leading order 

• !"# reduces both Π%&'() and *& by the same factor ( !"#
+,

) 
• !&# = ⁄Π%&'() *&, to leading order à !"# effect cancels

• Related paper:
• J. C. Li and P. H. Diamond, “Interaction of turbulence-generated azimuthal and 

axial flows in CSDX”, manuscript in preparation.
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Conclusion: summary and look forward
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Lessons learned (1)

• Self-amplification of seed axial flow shear driven by drift wave turbulence
• No requirement for magnetic shear 

à effective in cases with and without magnetic shear

• Axial flow saturates below PSFI threshold

• Confirmed by measurements of symmetry breaking and axial flow generation in CSDX

• For ITG turbulence:
• Seed flow shear cannot self-amplify à no intrinsic parallel flow at zero magnetic shear

• With other flow drives à !∥# steepens 

à !∥# saturates significantly above PSFI threshold

à PSFI dominates over ITG turbulence à generalized Rice scaling: $!∥ ∼ $&' ⁄) *

51



Lessons learned (2)

• Interaction of intrinsic axial and azimuthal flows in CSDX
• !"# and !$# couple through residual stress and turbulent production

• !$# reduces the production (i.e., Reynolds power) of !"#
• !"# saturates below the PSFI threshold 

à consistent with theoretical prediction and experimental measurements
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Future direction for CSDX:
• Current: weak coupling between intrinsic axial flow and zonal flow

• Because !"#"$ ≪ !&#&$ , zonal flow regulates turbulence

• Parasitic axial flow rides on drift wave–zonal flow system

• Future:
• Axial momentum source:

• Strong externally driven axial flow à !"#"$ ∼ !&#&$ à
(
() + #&+& + #"+" ∼ , − !&#&$Δ/ − !"#"$Δ/

à significant #"$ effects on drift wave and zonal flow

• Strong coupling of axial and azimuthal flows

• Transport barrier formation

• Pulsed source à avalanching and its effects on transport
• Heat the ion à ITG regime à coexisting ITG and electron drift wave turbulence?
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Future direction: drift wave—!'#—!"′ ecology in CDSX
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Frictionless zonal flow saturation

• J. C. Li and P. H. Diamond, “Frictionless Zonal Flow Saturation by Vorticity Mixing”, submitted to 
Physical Review Letters.

• J. C. Li and P. H. Diamond, “Another Look at Zonal Flow Physics: Resonance, Shear Flows and 
Frictionless Saturation”, submitted to Physics of Plasmas. 
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Zonal flow saturation absent frictional drag
• Motivation: physics of Dimits up-shift regime

à collisionless regime with near-marginal turbulence

56

• Tertiary instability not effective
– Severely damped by magnetic shear
– Observed mean flow shear is always below the threshold for tertiary instability excitation

• Solution: wave—flow resonance !" − $%&%'Δ)
– Resonant scattering of vorticity saturates zonal flows

x

y
Resonant surface Overlapped islands 

à stochastic trajectories 
à irreversibility



Overview of results

• Resonance effects on linear stability
• Wave—flow resonance suppresses instability
• !"# weakens resonance à !"# enhances instability via resonance
• Contradicting conventional shear suppression models
• Wave—flow resonance is important at least in some regimes

• Resonant scattering of vorticity saturates zonal flow in frictionless 
regime
• Resonant PV mixing à turbulent diffusion of vorticity à zonal flow saturation
• Extended predator—prey model including this resonant regulation effect
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Results
• Zonal flow shear and scale are directly calculated from this model
• Mesoscopic flow scale: !"# ∼ %&⁄( )*+⁄, )à %& ≪ !"# ≪ *+
• *+ ∼ !. is the base state mixing length at zero flow shear

• Strong flow shear: /"#0 ∼ 12
34

56
72

⁄, )

• Implication for gyro-Bohm breaking: 8 = 8:%∗⁄< = 56
34

⁄, =
∼ 8:%∗ ⁄< =

• Extended predator—prey model à turbulence energy ∼ ⁄>3? @1?, not ∼ >3
• Flow independent of turbulence level à effective in regulating frictionless 

marginal turbulence
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Thank you!
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Appendix
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Intrinsic toroidal rotation: phenomenology
• Cancellation experiment
• Neutral Beam Injection (NBI) à External torque
• 1 co + 2 ctr NB = 0 total torque à Intrinsic torque = 1 co NB
• “co” and “ctr”: toroidal direction same as/opposite to plasma current direction

NBI and plasma current directions
Total rotation profile for different 

NB configurations
61



Parallel shear flow instability

• Growth rate and resulting turbulent momentum diffusivity:

!"
#$%& ≅

()(*+,-, .* / − .* 1234
/

1 + (78+,8

9:
#$%& ≅;

"

<" 8()
8+,8

4 1 + (78+,8 8

>∗8
()(*+,-, .* / − .* 1234

/

1 + (78+,8

• 〈.*〉′ hits PSFI threshold à 9:
#$%& nonlinear in C .* à 9:

4D4 > 0

• G〈.*〉′à ΠIJ, à G〈.*〉′ growth ß Saturated by PSFI

9:
4D4 = 9:

LM − 9:
&N1 < 0

9:
4D4 = 9:

LM + 9:
#$%& − 9:

&N1 > 0 62



Nonlinear Model: Resonant PV Mixing

63

• Vorticity:

• Potential enstrophy:

• Density:

� !", #", $": collisional particle diffusivity, flow damping, 
vorticity diffusivity à vanishing in collisionless regime

� #%& = #%& ⟨)*⟩ : nonlinear damping rate 
driven by tertiary mode

Irrelevant to most 
cases we have 
encountered

ß

Ω ≡ ./0



Extended Predator—Prey Model

64

• Turbulence energy (potential enstrophy):

Forward cascade of PE Linear instability

• Mean flow energy:

Production by residual 
vorticity flux

Nonlinear damping 
by tertiary modes

Resonant diffusion 
of vorticity

Collisional Damping

new



Turbulence and flow states

65

• Frictionless = friction drag→ 0
• Frictionless saturation compared to usual frictional damping: 

– Turbulence energy determined by linear stability and small scale dissipation
à Different from usual models, where turbulence energy ~ flow damping

– Flow state basically independent of stability drive
à There can be flows in nearly marginal turbulence

• Compare by regime:


