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Abstract 5

The coupling of turbulence-driven azimuthal and axial flows in%a linear device absent magnetic
shear (CSDX) is investigated. In particular, we examine tle z‘xb)orti ment of Reynolds power
between azimuthal and axial flows, and how the azimuthdllew shear affects axial flow generation
and saturation by drift wave turbulence. We study the  respQnse at the energy branching ratio, i.e.,
ratio of axial and azimuthal Reynolds powers P[?/ é&tcn'jxcremental changes of azimuthal and
axial flow shears. We show that increasing a: 'mNd‘w-shear decreases the energy branching
ratio. When axial flow shear increases, this ratie firstincreases but then decreases to zero. The axial
flow shear saturates below the threshold fo&f\‘%&hear flow instability. The effects of azimuthal

of i

flow shear on the generation and saturatio rinsic axial flows are analyzed. Azimuthal flow

.
shear slows down the modulational th'ef the seed axial flow shear, and thus reduces intrinsic
axial flow production. Azimuth Wear reduces both the residual Reynolds stress (of axial
mﬁosi‘c (xP™) by the same factor |(v,)'|2A; 2L, 2p%c?, where A,

flow, i.e., I1Z%) and turbu

is the distance relative o the reference point where (v,) = 0 in the plasma frame. Therefore, the

stationary state ?ﬂ o sheal' is not affected by azimuthal flow shear to leading order, since

() ~ I X2 3\
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Publishihg INTRODUCTION

Intrinsic flows of plasmas are beneficial to magnetic confinement and MHD control [1, 2].
Intrinsic flows occur both parallel to the magnetic field (e.g., toroidal rotations in tokamaks
[3] and axial flows in linear devices [4]) and perpendicular to the 7gnetic field (e.g., zonal
flows [5-7]). In particular, the combination of intrinsic parallel low andaweak magnetic shear

is required for the formation of enhanced confinement states, s bstates with de-stiffened

heat flux profiles vs. VT [2]. Zonal flows are mesoscopic atha\n ad to the suppression
of micro-turbulence [8]. Therefore, turbulence-driven ﬂ@@ss@) o weak magnetic shear
are of interest. Controlled Shear Decorrelation Expefiment DX) is a linear device with
comprehensive fluctuation and flow diagnostics amd. un rmsaxial magnetic fields, i.e., zero
1\31(‘\Lt.hal"§ows in CSDX are both driven by
turbulence [4, 9, 10]. Thus, CSDX is an ideal 16 to study the physics of turbulence-
driven flows in uniform magnetic fields. *\
The generation of axial and zonal ﬂ&‘N\‘RﬁSDX can be viewed as a heat engine model

[11], as illustrated by Fig. 1. Initiall H’ﬁ}re& y profile gradients (e.g., Vn, in CSDX), the

magnetic shear. In addition, the axial and

turbulence energy is coupled to Sm 1 and zonal flows. Both flows are accelerated by
Reynolds force, which is the %‘O Reynolds stress. The branching ratio of turbulent
flow production is then the ratio of axial to azimuthal Reynolds powers. The Reynolds
power is the product %ﬂ s force and flow velocity, i.e., the axial Reynolds power is
PR = —(p,0,)(v,) @Zaz uthal Reynolds power is PF = —(0,7)"(vg). The branching
ratio is then PZR/ . In

is weak, bec 1s%kz(vz {/ko(vg)’ < 1 [4]. The turbulence energy is primarily coupled to

4))(, the coupling of intrinsic axial and azimuthal (zonal) flows

/Pl < 1. In return, zonal flows regulate drift wave turbulence through

axdal flow is parasitic, riding on the drift wave-zonal flow system. Indeed,
in th regims of intrinsic axial flows, the regulating effect of zonal flow is expected to be
sﬁ)f‘git that of axial flow, due to weak axial flow shears, i.e., |k,(v,)’|/ko({vg)’ < 1.
rin?ic axial flows are driven by the axial Reynolds force, i.e., —(0,0,)". The axial
10lds stress contains a diffusive component and a residual stress, i.e., (0,0,) = —x,(v,) +
IL%. The residual stress does not depend on flow magnitude or shear, so the gradient of

— 0,112 accelerates the axial flow from rest. The residual stress requires spectral asymmetry

in the ko—k, space, because it is determined by the correlator (kok,) = >, kok.|¢x|*. In
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F1G. 1: Schematic of turbulence-driven axial and azimuthal (zonal) flows in CSDX. P and Pf“

are axial and azimuthal Reynolds powers, respectively.

CSDX, a seed axial flow shear breaks the spectral symmetry [12] without requiring the

well-studied geometrical mechanisms [13, 14]. The residual stres%hen induces a negative

Thenw| x| exceeds the

turbulent viscosity driven by drift waves—such that the tota%ty is negative—the seed
ia

viscosity increment, i.e., ST = —yBes5(y )| where yFes <
flow shear is amplified by the modulational instability. T ow shear can saturate by
two mechanisms. When the turbulent diffusion of axial mendentum is equal to the residual
stress in magnitude, the Reynolds stress and thus t ;;cial eynolds power are then zero,
ie., (0,0,) = 0 and P® = 0. As a result, the axial flow s saturates. The saturated axial
flow shear is determined by the balance betwéen re&d@ stress and the turbulent viscosity
driven by drift waves, i.e., (v,)" = I1£e /y % the axial flow shear exceeds the linear
threhold of parallel shear flow instabilit XSE 15, 16], the strong, nonlinear turbulent
viscosity induced by PSFI saturates ghe ax ﬂow shear. The flow shear then saturates near

and below the PSFI threshold [1§e>v)\' < 102Y feri

Zonal flows are driven by ,vorti¢i

x. This is because the perpendicular Reynolds

force is equivalent to Vortl(:lty the Taylor identity [17, 18], i.e., —(0,09)" = —(0;p)
where p = V2 ¢ is the Consequently, the perpendicular Reynolds power is Pt =
—(0,p) (v Similar £o t%al Reynolds stress, the vorticity flux contains a diffusive
component and a ol (0:p) = —xo{ve)” +T 5 [7,19]. While the generation of
zonal flows is W d1e , the question of what saturates the flow in the collisionless

regime is sel Qddressed Recently, it has been shown that turbulent diffusion of vorticity
saturates{zonal flows, in absence of frictional drag [20, 21]. This new mechanism departs
from fte t{)ted saturation by tertiary instability of zonal flows [22]. The relevance of
tertlar insta; 1hty to zonal flow saturation in confinement devices is debatable.
The al of this paper is to understand the evolution of fluctuation—flow ecology (including
and [23, 24]. This has not been addressed by previous experiments or
\ lations. The question of what couples the parallel and perpendicular flows in absence of
geometrical mechanisms is open. Magnetic shear allows perpendicular flow shears to break
the symmetry of the & spectrum of turbulence, leading to the generation of intrinsic parallel

flows [13]. However, this geometrical mechanism is not relevant for low or zero magnetic
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Publishi:ﬂg wr, such as in the flat-q regime in tokamaks and linear devices with uniform magnetic
fields, e.g., CSDX. The coupling of potential vorticity and parallel compression (V7)) can
convert parallel flows into zonal flows [25]. But, this coupling is weak in the regime of
intrinsic parallel flows, due to kL, < 1 in CSDX.

In this paper, we address the following questions: /

(1) What is the branching ratio, i.e., the fraction of turbulQierg coupled to axial
In

flows, relative to that coupled to zonal flows, in CSD)\rticular, we study how

the increments of azimuthal and axial flow shears ffe‘() the Branching ratio P2/PR.
~y

(2) How do zonal flow shears affect the generation%zuu tion of intrinsic axial flows,

absent magnetic shear? In the context of Q-DX,

affects the modulational instability of yle\iamow shear and the saturated axial

study how the zonal flow shear

L -

flow shear. \

We study the change of branching r tie.i,uponse to incremental changes of azimuthal
and axial flow shears. We increase o a%he

other, and calculate the resulting/bran mg}atio PR/PF for each combination of axial and
azimuthal flow shears. For ea %‘GA ow profiles are fixed, i.e., we ignore the feedback of
turbulence-generated flows on theslow profiles. By increasing the azimuthal flow shear, the

change of PX/PJ refle s%ﬁompetition between turbulence-driven axial and azimuthal

imuthal and axial flow shears, while fixing the

flows. Increasing the' axialflow shear allows us to explore the saturation of intrinsic axial

flows. Particular}f, wedinvestigate whether the intrinsic axial flow shear saturates due to
the turbulent i chiven by drift waves (xP") or due to PSFI. This study addresses
the regime Lesdrift wave is the dominant instability population. Perpendicular Kelvin—
Helmholtw (K4T) instability driven by the azimuthal flow curvature is negligible [19], because
KH dfive is mtigh weaker than the Vng drive, i.e., |kgp?(vp)”| < wie. Here, w.e = kypscs/ Ly,
isqhe electron drift frequency and L, = ng/|dng/dz| is the density gradient scale. As a

result, v&’y are interested in the regime where |(vg)|/c; < L3, /psLn, and Ly, is the scale

\t& of azimuthal flow shear.

In addition, we study how azimuthal flow shears affect the generation and saturation of
axial flows by turbulence. The axial residual stress is calculated including a strong azimuthal
flow shear. We analyze the effect of azimuthal flow shears on the modulational instability of

a seed axial flow shear. Moreover, study how the azimuthal flow shear affects the saturated

4
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Publishimgal flow shear, which is calculated using (v.)" = I17* /xP". Here, we consider the regime
where PSFI is stable, ie., |(v,)| < |[(v;)'|eit- Though the wave—flow resonance can be
prominent in linear devices, here we consider the regime where the resonance is weak. In
CSDX, where |k,|/ky < 1, the main resonance is between drift wave and azimuthal flow, i.e.,
wr—ko(ve) —k.(v,) = wr—ko(ve) = wr—ke{ve)' Az A, is the dista,ngé/relative to the reference
position. The Doppler-shifted drift wave frequency is approxi v Wik Wi/ (1 + k2 p?).
Thus, when the value of |kg(vg)'A,| is close to wy., the resqnaregfs strong. In this work,
we consider the regime where |kg(vg)'Ay| > w., ie., X% psLv, /A Ly,. Hence,
resonance is neglected. In addition, the KH drive is neg janared to the drift wave

drive, yielding [(ve)|/cs < Li,/psLy. Taken togeth r,ﬂwe octs on the regime where the

azimuthal flow shear satisfies psLy, /A, L, < \(v@cs <L P2 ] Ds L.

The rest of this paper is organized as fol&&j@on IT presents how increments of

azimuthal and axial flow shears affect the turbulenge energy branching ratio. Section III

studies the effects of azimuthal flow shear onthe eration and saturation of intrinsic axial
flows in CSDX. Section IV summarii’;h\eggin results. Section V discusses the results and

future directions. \ S ~

II. TURBULENCE ENER%‘\B ANCHING RATIO

We study the appertienmernt of turbulence energy between azimuthal and axial flows
through a modula %}y We incrementally change the azimuthal or axial flow shear,
atd. study how the Reynolds work branching ratio P?/PJ® changes

while fixing the Eher\h
respectively. (% in this study, we ignore the feedback of turbulence-driven flows on the
flow profilés. /T his, the flow profiles are determined by external input, which is adjusted to
matchepro frofn CSDX. In particular, we seek to answer the following questions:

e d} azimuthal flows compete for turbulence energy with axial lows?

I~

I the following, we present the results of this study.

o)v do turbulence-driven axial flows saturate?

We study the Hasegawa—Wakatani drift wave system coupled with parallel flow fluctua-
tions in slab geometry in the presence of a mean perpendicular (azimuthal) flow (v,) and a

mean parallel (axial) flow (v,), both of which vary in the & (radial) direction:

5
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d_ . Vng . 2~ 7 2~
pnl + 0, o Dyo; (7 — ¢) + DV, (1)
d_ _ St -
i + 0,(p)’ = D02 (7 — @) + x.V°p, (2)

%az + G (0) = 0.7, A \ (3)

where we define D = v, /ve; and d/dt = 0, + (v,)0y + (0,)0-.-

... 18 electron—ion collision
frequency and vrp. is electron thermal speed. We have 051a ized electric potential fluc-

tuation as ¢ = edp/T, and density fluctuation as n = 1, whiere ng is the equilibrium

_—
density. The magnetic field is uniform and lies in 2 irecti%l. Both ng and (v,) vary only
in Z direction. p = p?V2 ¢ is the vorticity ﬂuctuﬁ):, ps is the ion Larmor radius at

electron temperature, (p) = (v,)'ps/cs is the z&a\@ty where ¢, is the ion sound speed.
Ve = ¢z X V¢ is the E x B velocity fluctuationy, D. and . are the collisional particle
diffusivity and vorticity diffusivity (i.e. Visc&%\

inan'\staBility. The vorticity gradient may drive the
perpendicular Kelvin—Helmholtz (K ht&bility. But the vorticity gradient drive is quan-
titatively weaker than the Vn dgéﬂ{], e, |kyp?(v,)"] Jwee < 1 where wie = kypscs/ Ly, is
the electron drift frequency an \ﬁo /|dng/dx| is the density gradient scale. Also, |{v,)’|
is well below the PSFI thireshold, such that PSFI is strongly damped.

The azimuthal and axtal flows are both externally imposed and fixed. We denote them
as V, and V, to disti sh t}em from the intrinsic flows. As a result, the dispersion relation
110

follows from théé;\

AN n ia(Q — wie)  kykopses V] k2 (wie + i)
p —

Collisional drift waves are the do

equation for ¢:

, 4

= ‘j'fﬁvThe/ Vei and Qi = wy — k,V, — K.V, + iy,. We obtain the ¢ profile by
u@i}el nvalue solver. Here, we set the extent of the radial direction to be 0 < z <
T e

L e L, = 5ps. We set the parameters in the range relevant to CSDX, which are

/=" cm, L, = 1.5 cm, kyps = 0.7, L, = 300 cm, k, = —27n/L,. The adiabaticity
parameter is k2D|/w.. = 3. The flow profiles are: V), = Ve sin |7 (z/L, —0.5)] and
V. = Vi max cos (mx/L;). The boundary condition is ¢(0) = ¢(L,) = 0. Then, we can obtain

the drift wave frequency wy, growth rate 7, and ¢ profile.
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PublishingUsing the ¢ profile, we determine the average Reymnolds powers, which are: Pf =
—L;" [ dxdy(0,0,)V, and PF = —L;! fOL“” dx(0,0,)'V,. By Taylor identity [17, 18], the az-
imuthal Reynolds force is identical to the vorticity flux, i.e., —0,(0,0,) = —(0,p). Hence, the
azimuthal Reynolds power becomes PyR =—L! fOL‘” dx(v,p)V,. The vorticity flux contains
a diffusive flux and a residual flux, i.e., (0,p) = —x, V' + T Res. g(he azimuthal Reynolds

power is then P ~ L1 [ dx [—x,(V))? = FeV,]. Theref

the urbulent diffusion

definite. The residual vorticity flux can convert the tur rgy to azimuthal flows,

of vorticity dissipates the azimuthal flow shear, because its og'\utlon to PR is negative
16

when FRESV < 0. Similar to the vorticity flux, the ax1al Td's-\stress contains a diffusive

momentum flux and a residual stress, i.e., (0,0,) = ZVZ JS s Consequently, the axial

Reynolds power is P ~ L7t [ dx [—x.(V])? q”IRes
couple the turbulence energy to the axial ﬂow\ ' > 0. The turbulent diffusion of

Thus, the residual stress can

axial momentum dissipates the axial flow.
The turbulent fluxes are calculate usm he“quasilinear theory. Here, we ignore the

resonance between drift wave and the azl tha and axial flows. Effects of resonance on

regulating drift waves and zonal ﬁ)\z }r’a:sion are discussed in Ref. [20, 21]. As a result,
si

i \x{ orticity is

ek |
wrFky Vy
QQ

the non-resonant turbulent diffu

The residual vort i

ve + Q(Wee — RD) 78| Wee ik (Wye + i)

FRes — |(’u . §R ]f k . Svl RIas

Qﬁ\ Q% + daf (PR T Q2 ( + i)
(6)

The t, rb'ulen 81v1ty of axial momentum is

&5 Z |g’“|2kyp§ lowl® (7)

R .
e residual stress is

ikyk,(wWie + i)
HRes R *e s 3 2‘ 8
=R i) I (®)
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FiG. 2: Change of branching ratio P/ Pf in response to incremental changes of azimuthal flow
shear. The axial flow profile is given by V, = V. paq cos (mx/Ly), where V, 40 = 0.13¢s. The
azimuthal flow profile is given by V), = V, mqa sin [ (2 /L, — 0.5)].

FIG. 3: Change of branching ratio P/ Pf' in response to incremental ghanges of axial flow shear.
The axial flow profile is given by V., =V, pqq cos (mz/L,). The azimuthal flew profile is given by
Vy = Vymage sin [ (/L — 0.5)], where V), ;42 = 0.13¢,. S

We study the changes of branching ratio of low produ ioﬁ)}yﬂqynolds work in response

to incremental changes of azimuthal and axial flowshea The branching ratio is the

ratio of axial to azimuthal Reynolds powers Pf/P;

It nsaasures the turbulence energy
apportionment between axial and azimuthal ﬂov@Fi

g.)l shows that azimuthal flow shear
impedes the turbulent production of axial flow\)Vhep ificreasing the azimuthal flow shear,
while fixing the axial flow, the ratio P/ creases. This follows because the azimuthal

flow shear reduces the magnitude of iaJ%'dual stress, i.e., |II*| decreases. Because
siti

Tz

PR > 0, the residual stress makes contribution to PZ, i.e., IIZ*V! > 0, in order

to overcome the dissipation set turhiflent diffusion of axial momentum. Therefore, the

axial Reynolds power decreasgs, as W/, fmu. increases.
Fig. 3 shows that the turbmuction of axial flow saturates below the PSFI thresh-

old. We increase the a al%bmagnitude V. maz, With the azimuthal flow fixed. The ratio
P /PR first rises. Bor lar

the saturation is #elowsghe PSFI threshold! Fig. 4 shows the drift wave growth rate vs. the
axial flow shear Mset of PSFI requires |V/| e > 2¢s/ps. The axial flow production
saturates ifazx = 0.1cs/ps, as given by Fig. 3, which is far below the PSFI threshold.

~.maz, the ratio saturates and starts to decrease. Note that

This occtug because at |V/|nae = 0.1cs/ps, the turbulent diffusion of axial momentum is
compdrable to'tlie residual stress in magnitude. This makes the axial Reynolds power close
toezero,meaning that the net production of axial flows by turbulence approaches zero. As

sult,yhe intrinsic axial flow shear saturates at |V/|nae = 0.1¢s/ps, which is well below

a
‘t‘hﬁ P threshold.
S

FIG. 4: Growth rate of drift wave instability for various axial flow shears. The axial flow
profile is given by V., = V, e cos(mz/L,). The azimuthal flow profile is given by V, =
Vymag sin [T (z/ Ly — 0.5)], where V pae = 0.13¢s.
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The intrinsic axial flow in CSDX is driven by drift wave turbulence, via a dynamical
symmetry breaking mechanism [12]. In response to a seed axial flow shear, the residual
Reynolds stress induces a negative viscosity increment. When this degative viscosity incre-
ment exceeds the turbulent viscosity driven by drift waves (i.e., su(}:\\he total viscosity
is negative), the seed shear amplifies itself through a modulati zﬂnstabi ity.

When the axial flow shear steepens, a finite residual stress formg due to the spectral
asymmetry of drift wave turbulence. The stationary oa\{fa ial flow shear is then
determined by the balance of residual stress with turbulent diffusion of axial momentum by
drift waves, i.e. (v,) ~ I18es /xDW, - K

In the rest of this section, we study the eff ts(q.f,azﬁ’uthal flow shear on the generation
and saturation of axial flows. We first st howg N azimuthal flow affects the stability
of drift waves in CSDX. Then, we focus\;\% he azimuthal flow shear regulates the

modulational instability of the seed axiéqusﬁh’ear. Also, we investigate how the azimuthal

flow shear regulates the stationary a W‘%{)g&% ear profile determined by (v,)" ~ TIfs /\PW.

A. Azimuthal flow effec ift wave instability

We study the drift waye system described by Egs. (1) to (3). Electrons are weakly adia-

batic, i.e., n = (1 — 5)@3, whegé the non-adiabatic electron response § < 1. 9 is determined

by the frequenc%% v A (wie — wi — Ky (vy) — k. (v.))/k2D). The eigenmode equation

Noa :
= 1—|—kyps i6) —

Wae + kyp2(v,)"  kyk.pses(v,) k2c?
i SRR (1 in) gt |6 (9

Multiplying bethfsides of Eq. (9) with ¢* and integrating over the radial direction, we obtain

the linear dis&>ersion relation, which is
ﬁ

3 ] *+k7p2<1)>” kkpc(v)’ k22

2 2 sy _ Wre T NyPs Uy yPalsCs\Y/ 1 s —0. 1
( i) - e R Bl iS00 o
Here, we define the effective radial wavenumber k2p? = p? [ dz|0,¢|*/ [, dz|¢|*. Hence,

the perpendicular wavenumber is k% p2 = k2p2 + k7 p?.

Azimuthal flows stabilize drift waves by reducing the effective electron drift frequency,
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Publishiwgi ch IS Whe = Whe + k;ypg (vy)" in the presence of azimuthal flows. When the curvature of
azimuthal flow satisfies k,p?(v,)” /wse < 0, the flow curvature weakens the effective electron
drift frequency, and thus stabilizes. In CSDX, the condition k,p?(v,)” /w. < 0 holds true,
and thus the azimuthal flow curvature stabilizes drift waves. In the following analysis, we
consider the case where k,p?(vg)"” /w.e < 0. The Doppler-shifted freg{ﬁency and linear growth

rate of drift wave are calculated using the dispersion relation E .-%0), 1ich are

Whe kyk.pscs(v,)’
— 11
YRT TR 2 Wne “) (11)

12

~——
e L@ < Btk ,<%‘;>"$ kzpscs<vz>'>. 12
2D (L k202 \1+K1pY g Wi Wre
The PSFI threshold for axial flow shear is: Q ’)
o
[CR Y —— vz (13)

|kykzpsgs]
\
When exceeding the threshold give "msE “(13), axial flow shear drives turbulence as a
B

free energy source. Note that in regiine relevant to CSDX where k,p?(v,)" /w.e < 0, the

azimuthal flow lowers the PS\&U.

B. Azimuthal flo eﬁ% on axial residual stress

In this subsectitn, we show that azimuthal flow shear slows the modulational growth of

the seed axial ﬂovhh@".

residual stresssand turbulent viscosity. Consequently, the axial Reynolds power is reduced by

oreover, azimuthal flow shear reduces the magnitudes of both

azimuthal flow shear. Note this agrees with the trend shown in Fig. 2. However, azimuthal

flow does not affect the stationary axial flow shear, to leading order. This follows because

sax1 ﬁox) is saturated by the turbulent viscosity. The effects of azimuthal flow shear

cancels, 30 leading order, in determining the stationary axial flow shear, which is given by

/ R DW
‘@9 ~TEE X
-

First, we calculate the axial Reynolds stress with azimuthal flow effects included, following

the same procedures presented in Ref. [12]. The axial Reynolds stress can be written as a

10
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U I(v.) R
) = — . T18es, 14
(B) = . 202y o (1)
From Eq. (3), we obtain that
~ 1
b, = [ ko ———
(wi — Ky (vy)'Az) (V' =1)

Here, V' = ky(vy)'Az/wi ~ (vy)AzLy/cspsLy,. Thus 111)}16 non-resonant regime (i.e.,

[(vy)|/cs > AyLy/psLy,, so |[V'| > 1), we obtain thk

Uz ’V’ (15>
As a result, the turbulent viscosity and r BS are
ey ! "* LY : 16
|V’|2 2 +‘kﬁp2 T yps|¢ ° )
1 1 \bin |k:p (v)"| kkpc(v)’
Res ~ s zFPsCts\Uz 2
Hmz - Z |V/|2 kZD” (2 + &\ J_p Y o Y Y w_2 k:ykzpscs|¢k| .
k z S *€e *e

(17)

The residual stresg r ‘%symmetry breaking in the k,—k, space. Note the ‘nega-

tive viscosity pieze B (} ) (i.e., the third term in brackets, which is proportional to
kyk.pscs(v,)') is ol

0 .
=3

ompared to the term proportional to k% p?/(1 + k% p?) (i.e., the
first term in r{@ets). herefore, symmetry breaking in the k,~k, space is necessary for a

NONZEro Absent magnetic shear, a seed axial flow shear breaks the symmetry and is

rz /
self-amplifie thwfugh a modulational instability. As a result, the broken symmetry in the

k, k. space %nerges, along with a finite axial flow shear profile. Hence, with this spectral

ﬁ
a@y, he residual stress, to leading order, is

“7 1 24 k202 K2p2
~ HRGSQ 1Fs 1Fs kkzssj 18
= 2 WE Dy Temg el )

kykz(vz) >0

where I, = |¢p)?(kyk.(v.) > 0) — |ox]*(k,k.(v,) < 0) accounts for the spectral imbalance.

Therefore, both the residual stress and turbulent viscosity driven by drift waves are reduced

11
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Publishihg wzimuthal flow shear. Consequently, the axial Reynolds power is reduced by azimuthal
flow shear, yielding PE ~ |V’|~2. This agrees with the trend shown by Fig. 2.

Next, we show that the azimuthal flow shear also impedes the self-amplification of seed

flow shear, i.e., azimuthal flow shear slows down the modulational growth of seed flow shear.

In response to a seed axial flow shear 6(v,)’, the residual stress in?(ces a negative diffusion

of momentum flux, i.e., 5
OTLTE™ 22 X *[6(v.), (19)
where the negative viscosity increment is ‘)\
'h\

-
o 11 Kjpic]
M o DU (LERNQU YK Dl (20)

k&‘)

The growth rate of the flow shear modulation is deterfained by the difference between ||

and ., i.e., \
\
Yo = (X — X2 S
.
~ 2 |¢k‘|2k ; kipg |kypg<vy>”|
=~ Okl s ) (14 plRlsiT) ] 21

W
L *e

where ¢, is the radial enumber of the shear modulation, K = (1 + k?p?)(4 +

B 2 i, and

by the residual stres

is reinforced Viaée ulatienal instability. This means K > k3 p?/(1 + k3 p?) is required for
modulation g@&., vq > 0) of the test shear. For drift waves, we obtain k,ps ~ 1,
~ k2p2)(5 + k2p?) > 10k?L2 and 0.5 < k3 p?/(1 + k2 p?) < 1. Modula-

/ x X
ility fequires K > k2 p2/(1 + k2 p2) > 0.5, which is possible for drift waves. As

tional dnsta
shown«by Eqs (21), the modulational growth rate of the seed flow shear decreases when the

-
a imuth%I ow shear increases.

\I<
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PublishingC. Azimuthal flow effects on stationary flow shear profile

The evolution of mean axial flow is described by

0(v,) o . B oP
ot + %<U1U2> = _E — Unj <<U2> - Vn)/

The pressure drop in the axial direction is due to the heat@nd of the linear
1d

(22)

device. In CSDX, this pressure drop is weaker than the Re rce (—0,(0,0,)) by an

order of magnitude [4]. Frictions between plasma and el‘lbal s damp the axial flow
—~
in the edge region, where neutral particles concentrates ce, neutral damping sets the

boundary condition for the axial flow profile. Therefore, in 1§1e central region of CSDX, the
axial flow is generated and saturated by the axia(&y ds stress. The stationary state flow

order, is

is then determined by (0,7,) = 0. As a reult\e dgtationary axial flow shear, to leading

Res

(v2)' = @ipg)kz%/k@ps' (23)
%@
di

The azimuthal flow shear reduce and xPW by the same factor |V’|72. Hence,
this reduction effect cancels oui&f&a\ order in the stationary axial flow shear, which

is determined by the ratio II;7

the saturated axial flowss to ledding order. Note the relation §I1E¢ o §(v,)’ is valid
only for weak §(v,)’. Ag%al flow shear grows larger, due to modulational instability,
X1

Therefore, the azimuthal flow shear does not affect

the residual stres r%er linearly proportional to (v,)’. As shown by Fig. 3, when

(v,)" > 0.05¢4/ g%, 1’(\% Reynolds power decreases with (v.)’, which means the residual
stress is not@;y proportional to (v,)’. Therefore, (v,) = I12¢/xDPW can be used to
at

calculatedhe 7

~
IV._\wARY OF MAIN RESULTS

&g@ work, we study the coupling of azimuthal and axial flows in CSDX, absent magnetic

ar-“We consider the regime of weak axial flow shear, such that V is far below the PSFI

ted flow shear.

threshold, i.e., V] < |V/|eie. In particular, we study how incremental changes of flow shears
affect the production branching ratio P/ PyR. Also, we investigate the effects of azimuthal

flow shear on intrinsic axial flow generation and saturation, absent magnetic shear. The

13
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Publishimgin results are:

Increasing azimuthal flow shear reduces the branching ratio, which is measured by the

ratio of axial to azimuthal Reynolds powers, i.e., PF/P[.

When axial flow shear increases, Pf*/Pf first increases bu/chen decreases to zero.

PR/PR decreases because as axial flow shear increases ulent diffusion of

w shear saturates at

axial momentum approaches the axial residual stress in“u gmtude, such that the
axial Reynolds stress decreases to zero. The intri X\\

V| mae = 0.1cs/ps, which is far below the PSFI thr

iy
When k,p2(v,)" /w. < 0, azimuthal ﬂows stabilige dr}tt waves by weakening the ef-

2

fective electron drift frequency w,, = w*e , so the drift wave growth rate is

reduced by the azimuthal flow curvat re\
Azimuthal flow shear slows modulati \wwth of seed axial flow shear, and thus
reduces the production of intrinsic a: al ow, by shear suppression.

~
Azimuthal flow shear redu‘&g axial residual stress (IT12¢*) and turbulent viscos-

ity driven by drift wav U)oy the same factor, i.e., both T2 and xPW scale
with the azimuthal flow shear as [V'|72 ~ |(v,)/|2A 2L, 2p%c?. So does the axial

[V'|72, which agrees with the trend that P*/P* decreases

Reynolds power, i

as az1muthal ow }he ificreases.

Azunutha hear does not affect the saturated axial flow shear to leading order,

N

becau&& 1% /xPW and the reduction by (v,)" cancels.
V. I-Sgw

)

The results in this work can be used to develop testable predictions for simulation and

exp mgqtal studies on interaction of parallel and perpendicular flows. This study is de-

Eﬁed upon the regime with straight magnetic fields. This makes the results relevant to

lin

r devices and flat-q regions in tokamaks. In tokamaks, the combination of weak mag-

netic shear (i.e., flat q profile) and strong toroidal rotation are required for the formation of

enhanced confinement states [2], such as internal transport barriers. Thus, the turbulence

14
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Publishiag gy apportionment between poloidal (i.e., zonal) and toroidal flows absent magnetic shear
is of interest.

Further study on turbulence and flows in CSDX could include:

e Effects of extrinsic axial flows driven by axial momentum ?Hce on turbulence and

intrinsic flows. \
e Physics of transport barrier formation. 3
In the regime of intrinsic parallel flows, the feedback o ax%hear on the turbulence—
—

flow system is weaker than that of azimuthal flow shedrin X, because |k, V] /koV| < 1.
As a result, the turbulence is regulated primarily byl ., bnd axial flow is parasitic. A
non-parasitic axial flow regime is achievable with an”external axial momentum source. Of
course, when the enhanced axial flow shear exceeds the"PSFI threshold, the resulting PSFI
turbulence can drive zonal flow via strong\j(‘\%% oupling [25, 26]. Even below the PSFI

threshold, externally driven axial flow &%:.n_enhance the regulating effect of axial flow
on turbulence. When |k, V], | is coﬂ\le |koVy|, the axial flow shear will have a strong
~
e7

effect on vorticity flux, mode stnxx d fluctuation intensity. In both ways, the external
axial momentum source can he.cKt interaction of axial and azimuthal flows in CSDX.
Moreover, the axial momentum sotice invokes the interaction of intrinsic and extrinsic axial

flows, which is analogods to the ‘cancellation” experiment [27]. This enables detailed studies
on the modulation gI‘O)Nth d saturation of seed axial flow shears in CSDX.
The external akial Stﬁlrce allows us to explore the physics of transport barrier forma-

tion. Both st torotdal rotation and weak magnetic shear are necessary for the formation

confinement states, e.g., states with internal transport barriers [2]. A linear
z‘éro }nagnetic shear and controlled axial flow shear—such as CSDX-is an ideal
testb d?o study the physics of such states. Increasing the axial flow shear can enhance
zonak flo neration via the acoustic coupling [25, 26]. As a result, the enhanced zonal
flo shea can lead to the formation of a transport barrier. In this way, we can study (1)
mgdetermines the axial flow shear threshold and (2) how the states of intrinsic axial flows
evelve before and after the transition. These are important for understanding the dynamics

of the flux-driven turbulence—zonal flow—axial flow ecology.

15
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