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Abstract

The coupling of turbulence-driven azimuthal and axial flows in a linear device absent magnetic

shear (CSDX) is investigated. In particular, we examine the apportionment of Reynolds power

between azimuthal and axial flows, and how the azimuthal flow shear affects axial flow generation

and saturation by drift wave turbulence. We study the response of the energy branching ratio, i.e.,

ratio of axial and azimuthal Reynolds powers PR
z /PR

y , to incremental changes of azimuthal and

axial flow shears. We show that increasing azimuthal flow shear decreases the energy branching

ratio. When axial flow shear increases, this ratio first increases but then decreases to zero. The axial

flow shear saturates below the threshold for parallel shear flow instability. The effects of azimuthal

flow shear on the generation and saturation of intrinsic axial flows are analyzed. Azimuthal flow

shear slows down the modulational growth of the seed axial flow shear, and thus reduces intrinsic

axial flow production. Azimuthal flow shear reduces both the residual Reynolds stress (of axial

flow, i.e., ΠRes
xz ) and turbulent viscosity (χDW

z ) by the same factor |⟨vy⟩′|−2∆−2
x L−2

n ρ2sc
2
s, where ∆x

is the distance relative to the reference point where ⟨vy⟩ = 0 in the plasma frame. Therefore, the

stationary state axial flow shear is not affected by azimuthal flow shear to leading order, since

⟨vz⟩′ ∼ ΠRes
xz /χDW

z .
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I. INTRODUCTION

Intrinsic flows of plasmas are beneficial to magnetic confinement and MHD control [1, 2].

Intrinsic flows occur both parallel to the magnetic field (e.g., toroidal rotations in tokamaks

[3] and axial flows in linear devices [4]) and perpendicular to the magnetic field (e.g., zonal

flows [5–7]). In particular, the combination of intrinsic parallel flow and weak magnetic shear

is required for the formation of enhanced confinement states, such as states with de-stiffened

heat flux profiles vs. ∇T [2]. Zonal flows are mesoscopic and can lead to the suppression

of micro-turbulence [8]. Therefore, turbulence-driven flows at zero to weak magnetic shear

are of interest. Controlled Shear Decorrelation Experiment (CSDX) is a linear device with

comprehensive fluctuation and flow diagnostics and uniform axial magnetic fields, i.e., zero

magnetic shear. In addition, the axial and azimuthal flows in CSDX are both driven by

turbulence [4, 9, 10]. Thus, CSDX is an ideal venue to study the physics of turbulence-

driven flows in uniform magnetic fields.

The generation of axial and zonal flows in CSDX can be viewed as a heat engine model

[11], as illustrated by Fig. 1. Initially driven by profile gradients (e.g., ∇ne in CSDX), the

turbulence energy is coupled to both axial and zonal flows. Both flows are accelerated by

Reynolds force, which is the gradient of Reynolds stress. The branching ratio of turbulent

flow production is then the ratio of axial to azimuthal Reynolds powers. The Reynolds

power is the product of Reynolds force and flow velocity, i.e., the axial Reynolds power is

PR
z ≡ −⟨ṽrṽz⟩′⟨vz⟩ and the azimuthal Reynolds power is PR

θ ≡ −⟨ṽrṽθ⟩′⟨vθ⟩. The branching

ratio is then PR
z /PR

θ . In CSDX, the coupling of intrinsic axial and azimuthal (zonal) flows

is weak, because |kz⟨vz⟩′|/kθ⟨vθ⟩′ ≪ 1 [4]. The turbulence energy is primarily coupled to

zonal flows, i.e., PR
z /PR

θ ≪ 1. In return, zonal flows regulate drift wave turbulence through

shearing. The axial flow is parasitic, riding on the drift wave–zonal flow system. Indeed,

in the regime of intrinsic axial flows, the regulating effect of zonal flow is expected to be

stronger than that of axial flow, due to weak axial flow shears, i.e., |kz⟨vz⟩′|/kθ⟨vθ⟩′ ≪ 1.

Intrinsic axial flows are driven by the axial Reynolds force, i.e., −⟨ṽrṽz⟩′. The axial

Reynolds stress contains a diffusive component and a residual stress, i.e., ⟨ṽrṽz⟩ = −χz⟨vz⟩′+

ΠRes
rz . The residual stress does not depend on flow magnitude or shear, so the gradient of

−∂rΠ
Res
rz accelerates the axial flow from rest. The residual stress requires spectral asymmetry

in the kθ–kz space, because it is determined by the correlator ⟨kθkz⟩ ≡
∑

k kθkz|ϕk|2. In
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FIG. 1: Schematic of turbulence-driven axial and azimuthal (zonal) flows in CSDX. PR
z and PR

θ

are axial and azimuthal Reynolds powers, respectively.

CSDX, a seed axial flow shear breaks the spectral symmetry [12] without requiring the

well-studied geometrical mechanisms [13, 14]. The residual stress then induces a negative

viscosity increment, i.e., δΠRes
rz = −χRes

z δ⟨vz⟩′, where χRes
z < 0. When |χRes

z | exceeds the

turbulent viscosity driven by drift waves—such that the total viscosity is negative—the seed

flow shear is amplified by the modulational instability. The axial flow shear can saturate by

two mechanisms. When the turbulent diffusion of axial momentum is equal to the residual

stress in magnitude, the Reynolds stress and thus the axial Reynolds power are then zero,

i.e., ⟨ṽrṽz⟩ = 0 and PR
z = 0. As a result, the axial flow shear saturates. The saturated axial

flow shear is determined by the balance between residual stress and the turbulent viscosity

driven by drift waves, i.e., ⟨vz⟩′ = ΠRes
rz /χDW

z . When the axial flow shear exceeds the linear

threhold of parallel shear flow instability (PSFI) [15, 16], the strong, nonlinear turbulent

viscosity induced by PSFI saturates the axial flow shear. The flow shear then saturates near

and below the PSFI threshold [12], i.e., |⟨vz⟩′| <∼ |⟨vz⟩′|crit.

Zonal flows are driven by vorticity flux. This is because the perpendicular Reynolds

force is equivalent to vorticity flux, by the Taylor identity [17, 18], i.e., −⟨ṽrṽθ⟩′ = −⟨ṽrρ̃⟩

where ρ̃ ≡ ∇2
⊥ϕ̃ is the vorticity. Consequently, the perpendicular Reynolds power is PR

θ =

−⟨ṽrρ̃⟩⟨vθ⟩. Similar to the axial Reynolds stress, the vorticity flux contains a diffusive

component and a residual flux, i.e., ⟨ṽrρ̃⟩ = −χθ⟨vθ⟩′′+ΓRes
ρ [7, 19]. While the generation of

zonal flows is well-studied [5, 6], the question of what saturates the flow in the collisionless

regime is seldom addressed. Recently, it has been shown that turbulent diffusion of vorticity

saturates zonal flows, in absence of frictional drag [20, 21]. This new mechanism departs

from the often-quoted saturation by tertiary instability of zonal flows [22]. The relevance of

tertiary instability to zonal flow saturation in confinement devices is debatable.

The goal of this paper is to understand the evolution of fluctuation–flow ecology (including

both ⟨v∥⟩ and ⟨vθ⟩) [23, 24]. This has not been addressed by previous experiments or

simulations. The question of what couples the parallel and perpendicular flows in absence of

geometrical mechanisms is open. Magnetic shear allows perpendicular flow shears to break

the symmetry of the k∥ spectrum of turbulence, leading to the generation of intrinsic parallel

flows [13]. However, this geometrical mechanism is not relevant for low or zero magnetic
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shear, such as in the flat-q regime in tokamaks and linear devices with uniform magnetic

fields, e.g., CSDX. The coupling of potential vorticity and parallel compression (∇∥ṽ∥) can

convert parallel flows into zonal flows [25]. But, this coupling is weak in the regime of

intrinsic parallel flows, due to k∥Ln ≪ 1 in CSDX.

In this paper, we address the following questions:

(1) What is the branching ratio, i.e., the fraction of turbulence energy coupled to axial

flows, relative to that coupled to zonal flows, in CSDX? In particular, we study how

the increments of azimuthal and axial flow shears affect the branching ratio PR
z /PR

θ .

(2) How do zonal flow shears affect the generation and saturation of intrinsic axial flows,

absent magnetic shear? In the context of CSDX, we study how the zonal flow shear

affects the modulational instability of seed axial flow shear and the saturated axial

flow shear.

We study the change of branching ratio in response to incremental changes of azimuthal

and axial flow shears. We increase one of the azimuthal and axial flow shears, while fixing the

other, and calculate the resulting branching ratio PR
z /PR

θ for each combination of axial and

azimuthal flow shears. For each case, the flow profiles are fixed, i.e., we ignore the feedback of

turbulence-generated flows on the flow profiles. By increasing the azimuthal flow shear, the

change of PR
z /PR

θ reflects the competition between turbulence-driven axial and azimuthal

flows. Increasing the axial flow shear allows us to explore the saturation of intrinsic axial

flows. Particularly, we investigate whether the intrinsic axial flow shear saturates due to

the turbulent viscosity driven by drift waves (χDW
z ) or due to PSFI. This study addresses

the regime where drift wave is the dominant instability population. Perpendicular Kelvin–

Helmholtz (KH) instability driven by the azimuthal flow curvature is negligible [19], because

KH drive is much weaker than the ∇n0 drive, i.e., |kθρ2s⟨vθ⟩′′| ≪ ω∗e. Here, ω∗e ≡ kyρscs/Ln

is the electron drift frequency and Ln ≡ n0/|dn0/dx| is the density gradient scale. As a

result, we are interested in the regime where |⟨vθ⟩|/cs ≪ L2
Vθ
/ρsLn, and LVθ

is the scale

length of azimuthal flow shear.

In addition, we study how azimuthal flow shears affect the generation and saturation of

axial flows by turbulence. The axial residual stress is calculated including a strong azimuthal

flow shear. We analyze the effect of azimuthal flow shears on the modulational instability of

a seed axial flow shear. Moreover, study how the azimuthal flow shear affects the saturated
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axial flow shear, which is calculated using ⟨vz⟩′ = ΠRes
rz /χDW

z . Here, we consider the regime

where PSFI is stable, i.e., |⟨vz⟩′| ≪ |⟨vz⟩′|crit. Though the wave–flow resonance can be

prominent in linear devices, here we consider the regime where the resonance is weak. In

CSDX, where |kz|/kθ ≪ 1, the main resonance is between drift wave and azimuthal flow, i.e.,

ωk−kθ⟨vθ⟩−kz⟨vz⟩ ∼= ωk−kθ⟨vθ⟩ ∼= ωk−kθ⟨vθ⟩′∆x. ∆x is the distance relative to the reference

position. The Doppler-shifted drift wave frequency is approximately ωk ∼ ω∗e/(1 + k2
⊥ρ

2
s).

Thus, when the value of |kθ⟨vθ⟩′∆x| is close to ω∗e, the resonance is strong. In this work,

we consider the regime where |kθ⟨vθ⟩′∆x| ≫ ω∗e, i.e., |⟨vθ⟩|/cs ≫ ρsLVθ
/∆xLn. Hence,

resonance is neglected. In addition, the KH drive is negligible compared to the drift wave

drive, yielding |⟨vθ⟩|/cs ≪ L2
Vθ
/ρsLn. Taken together, we focus on the regime where the

azimuthal flow shear satisfies ρsLVθ
/∆xLn ≪ |⟨vθ⟩|/cs ≪ L2

Vθ
/ρsLn.

The rest of this paper is organized as follows: Section II presents how increments of

azimuthal and axial flow shears affect the turbulence energy branching ratio. Section III

studies the effects of azimuthal flow shear on the generation and saturation of intrinsic axial

flows in CSDX. Section IV summarizes the main results. Section V discusses the results and

future directions.

II. TURBULENCE ENERGY BRANCHING RATIO

We study the apportionment of turbulence energy between azimuthal and axial flows

through a modulational study. We incrementally change the azimuthal or axial flow shear,

while fixing the other, and study how the Reynolds work branching ratio PR
z /PR

θ changes

respectively. Note in this study, we ignore the feedback of turbulence-driven flows on the

flow profiles. Thus, the flow profiles are determined by external input, which is adjusted to

match profiles from CSDX. In particular, we seek to answer the following questions:

(1) How do azimuthal flows compete for turbulence energy with axial flows?

(2) How do turbulence-driven axial flows saturate?

In the following, we present the results of this study.

We study the Hasegawa–Wakatani drift wave system coupled with parallel flow fluctua-

tions in slab geometry in the presence of a mean perpendicular (azimuthal) flow ⟨vy⟩ and a

mean parallel (axial) flow ⟨vz⟩, both of which vary in the x̂ (radial) direction:
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d

dt
ñ+ ṽx

∇n0

n0

= D∥∂
2
z (ñ− ϕ̃) +Dc∇2ñ, (1)

d

dt
ρ̃+ ṽx⟨ρ⟩′ = D∥∂

2
z (ñ− ϕ̃) + χc∇2ρ̃, (2)

d

dt
ṽz + ṽx⟨vz⟩′ = −∂zñ. (3)

where we define D∥ ≡ v2The/νei and d/dt ≡ ∂t + ⟨vy⟩∂y + ⟨vz⟩∂z. νei is electron–ion collision

frequency and vThe is electron thermal speed. We have normalized electric potential fluc-

tuation as ϕ̃ ≡ eδϕ/Te and density fluctuation as ñ ≡ δn/n0, where n0 is the equilibrium

density. The magnetic field is uniform and lies in ẑ direction. Both n0 and ⟨vy⟩ vary only

in x̂ direction. ρ̃ ≡ ρ2s∇2
⊥ϕ̃ is the vorticity fluctuation, where ρs is the ion Larmor radius at

electron temperature, ⟨ρ⟩ ≡ ⟨vy⟩′ρs/cs is the zonal vorticity where cs is the ion sound speed.

ṽE ≡ csẑ × ∇ϕ̃ is the E × B velocity fluctuation. Dc and χc are the collisional particle

diffusivity and vorticity diffusivity (i.e., viscosity).

Collisional drift waves are the dominant instability. The vorticity gradient may drive the

perpendicular Kelvin–Helmholtz (KH) instability. But the vorticity gradient drive is quan-

titatively weaker than the ∇n0 drive [19], i.e., |kyρ2s⟨vy⟩′′|/ω∗e ≪ 1 where ω∗e ≡ kyρscs/Ln is

the electron drift frequency and Ln ≡ n0/|dn0/dx| is the density gradient scale. Also, |⟨vz⟩′|

is well below the PSFI threshold, such that PSFI is strongly damped.

The azimuthal and axial flows are both externally imposed and fixed. We denote them

as Vy and Vz to distinguish them from the intrinsic flows. As a result, the dispersion relation

follows from the eigenmode equation for ϕ:

ρ2s
d2ϕ

dx2
=

[
k2
yρ

2
s −

kyρ
2
sV

′′
y

Ωk

+
iα(Ωk − ω∗e)

Ωk(Ωk + iα)
+

kykzρscsV
′
z

Ω2
k

− k2
zc

2
s(ω∗e + iα)

Ω2
k(Ωk + iα)

]
ϕ, (4)

where α ≡ k2
zv

2
The/νei and Ωk ≡ ωk − kyVy − kzVz + iγk. We obtain the ϕ profile by

using an eigenvalue solver. Here, we set the extent of the radial direction to be 0 ≤ x ≤

Lx, where Lx = 5ρs. We set the parameters in the range relevant to CSDX, which are

ρs = 1 cm, Ln = 1.5 cm, kyρs = 0.7, Lz = 300 cm, kz = −2π/Lz. The adiabaticity

parameter is k2
zD∥/ω∗e = 3. The flow profiles are: Vy = Vy,max sin [π (x/Lx − 0.5)] and

Vz = Vz,max cos (πx/Lx). The boundary condition is ϕ(0) = ϕ(Lx) = 0. Then, we can obtain

the drift wave frequency ωk, growth rate γk, and ϕ profile.
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Using the ϕ profile, we determine the average Reynolds powers, which are: PR
y =

−L−1
x

∫ Lx

0
dx∂x⟨ṽxṽy⟩Vy and PR

z = −L−1
x

∫ Lx

0
dx⟨ṽxṽz⟩′Vz. By Taylor identity [17, 18], the az-

imuthal Reynolds force is identical to the vorticity flux, i.e., −∂x⟨ṽxṽy⟩ = −⟨ṽxρ̃⟩. Hence, the

azimuthal Reynolds power becomes PR
y = −L−1

x

∫ Lx

0
dx⟨ṽxρ̃⟩Vy. The vorticity flux contains

a diffusive flux and a residual flux, i.e., ⟨ṽxρ̃⟩ = −χyV
′′
y + ΓRes

ρ . The azimuthal Reynolds

power is then PR
y ∼ L−1

x

∫ Lx

0
dx

[
−χy(V

′
y)

2 − ΓRes
ρ Vy

]
. Therefore, the turbulent diffusion

of vorticity dissipates the azimuthal flow shear, because its contribution to PR
y is negative

definite. The residual vorticity flux can convert the turbulence energy to azimuthal flows,

when ΓRes
ρ Vy < 0. Similar to the vorticity flux, the axial Reynolds stress contains a diffusive

momentum flux and a residual stress, i.e., ⟨ṽxṽz⟩ = −χzV
′
z + ΠRes

xz . Consequently, the axial

Reynolds power is PR
z ∼ L−1

x

∫ Lx

0
dx

[
−χz(V

′
z )

2 +ΠRes
xz V ′

z

]
. Thus, the residual stress can

couple the turbulence energy to the axial flow, if ΠRes
xz V ′

z > 0. The turbulent diffusion of

axial momentum dissipates the axial flow.

The turbulent fluxes are calculated using the quasilinear theory. Here, we ignore the

resonance between drift wave and the azimuthal and axial flows. Effects of resonance on

regulating drift waves and zonal flow saturation are discussed in Ref. [20, 21]. As a result,

the non-resonant turbulent diffusivity of vorticity is

χy =
∑

ωk ̸=kyVy

|γk|
|Ωk|2

k2
yρ

2
sc

2
s|ϕk|2. (5)

The residual vorticity flux is

ΓRes
ρ =

∑
k

kyc
2
s|ϕk|2

[
|γk|ω∗e + α(ω∗e −ℜΩk)

|Ωk + iα|2
− |γk|ω∗e

|Ωk|2
+ ℜ i

Ω2
k

kzkyρscsV
′
z −ℜik2

zc
2
s(ω∗e + iα)

Ω2
k(Ωk + iα)

]
.

(6)

The turbulent diffusivity of axial momentum is

χz =
∑
k

|γk|
|Ωk|2

k2
yρ

2
sc

2
s|ϕk|2. (7)

The residual stress is

ΠRes
xz = ℜ

∑
k

ikykz(ω∗e + iα)

Ωk(Ωk + iα)
ρsc

3
s|ϕk|2. (8)
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FIG. 2: Change of branching ratio PR
z /PR

y in response to incremental changes of azimuthal flow

shear. The axial flow profile is given by Vz = Vz,max cos (πx/Lx), where Vz,max = 0.13cs. The

azimuthal flow profile is given by Vy = Vy,max sin [π (x/Lx − 0.5)].

FIG. 3: Change of branching ratio PR
z /PR

y in response to incremental changes of axial flow shear.

The axial flow profile is given by Vz = Vz,max cos (πx/Lx). The azimuthal flow profile is given by

Vy = Vy,max sin [π (x/Lx − 0.5)], where Vy,max = 0.13cs.

We study the changes of branching ratio of flow production by Reynolds work in response

to incremental changes of azimuthal and axial flow shears. The branching ratio is the

ratio of axial to azimuthal Reynolds powers PR
z /PR

y . It measures the turbulence energy

apportionment between axial and azimuthal flows. Fig. 2 shows that azimuthal flow shear

impedes the turbulent production of axial flow. When increasing the azimuthal flow shear,

while fixing the axial flow, the ratio PR
z /PR

y decreases. This follows because the azimuthal

flow shear reduces the magnitude of axial residual stress, i.e., |ΠRes
xz | decreases. Because

PR
z > 0, the residual stress makes a positive contribution to PR

z , i.e., ΠRes
xz V ′

z > 0, in order

to overcome the dissipation set by turbulent diffusion of axial momentum. Therefore, the

axial Reynolds power decreases, as |V ′
y |max increases.

Fig. 3 shows that the turbulent production of axial flow saturates below the PSFI thresh-

old. We increase the axial flow magnitude Vz,max, with the azimuthal flow fixed. The ratio

PR
z /PR

y first rises. For larger Vz,max, the ratio saturates and starts to decrease. Note that

the saturation is below the PSFI threshold! Fig. 4 shows the drift wave growth rate vs. the

axial flow shear. The onset of PSFI requires |V ′
z |max > 2cs/ρs. The axial flow production

saturates at |V ′
z |max

∼= 0.1cs/ρs, as given by Fig. 3, which is far below the PSFI threshold.

This occurs because at |V ′
z |max

∼= 0.1cs/ρs, the turbulent diffusion of axial momentum is

comparable to the residual stress in magnitude. This makes the axial Reynolds power close

to zero, meaning that the net production of axial flows by turbulence approaches zero. As

a result, the intrinsic axial flow shear saturates at |V ′
z |max

∼= 0.1cs/ρs, which is well below

the PSFI threshold.

FIG. 4: Growth rate of drift wave instability for various axial flow shears. The axial flow

profile is given by Vz = Vz,max cos (πx/Lx). The azimuthal flow profile is given by Vy =

Vy,max sin [π (x/Lx − 0.5)], where Vy,max = 0.13cs.
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III. AZIMUTHAL FLOW EFFECTS ON INTRINSIC AXIAL FLOW

The intrinsic axial flow in CSDX is driven by drift wave turbulence, via a dynamical

symmetry breaking mechanism [12]. In response to a seed axial flow shear, the residual

Reynolds stress induces a negative viscosity increment. When this negative viscosity incre-

ment exceeds the turbulent viscosity driven by drift waves (i.e., such that the total viscosity

is negative), the seed shear amplifies itself through a modulational instability.

When the axial flow shear steepens, a finite residual stress forms due to the spectral

asymmetry of drift wave turbulence. The stationary profile of axial flow shear is then

determined by the balance of residual stress with turbulent diffusion of axial momentum by

drift waves, i.e. ⟨vz⟩′ ∼ ΠRes
xz /χDW

z .

In the rest of this section, we study the effects of azimuthal flow shear on the generation

and saturation of axial flows. We first study how the azimuthal flow affects the stability

of drift waves in CSDX. Then, we focus on how the azimuthal flow shear regulates the

modulational instability of the seed axial flow shear. Also, we investigate how the azimuthal

flow shear regulates the stationary axial flow shear profile determined by ⟨vz⟩′ ∼ ΠRes
xz /χDW

z .

A. Azimuthal flow effects on drift wave instability

We study the drift wave system described by Eqs. (1) to (3). Electrons are weakly adia-

batic, i.e., ñ = (1− iδ)ϕ̃, where the non-adiabatic electron response δ < 1. δ is determined

by the frequency shift, i.e. δ = (ω∗e − ωk − ky⟨vy⟩ − kz⟨vz⟩)/k2
zD∥. The eigenmode equation

is

ρ2s
∂2ϕ

∂x2
=

[(
1 + k2

yρ
2
s − iδ

)
− ω∗e + kyρ

2
s⟨vy⟩′′

Ωk

+
kykzρscs⟨vz⟩′

Ω2
k

− (1− iδ)
k2
zc

2
s

Ω2
k

]
ϕ. (9)

Multiplying both sides of Eq. (9) with ϕ∗ and integrating over the radial direction, we obtain

the linear dispersion relation, which is

(
1 + k2

⊥ρ
2
s − iδ

)
− ω∗e + kyρ

2
s⟨vy⟩′′

Ωk

+
kykzρscs⟨vz⟩′

Ω2
k

− (1− iδ)
k2
zc

2
s

Ω2
k

= 0. (10)

Here, we define the effective radial wavenumber k2
xρ

2
s ≡ ρ2s

∫ Lx

0
dx|∂xϕ|2/

∫ Lx

0
dx|ϕ|2. Hence,

the perpendicular wavenumber is k2
⊥ρ

2
s ≡ k2

xρ
2
s + k2

yρ
2
s.

Azimuthal flows stabilize drift waves by reducing the effective electron drift frequency,
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which is ω∗e ≡ ω∗e + kyρ
2
s⟨vy⟩′′ in the presence of azimuthal flows. When the curvature of

azimuthal flow satisfies kyρ
2
s⟨vy⟩′′/ω∗e < 0, the flow curvature weakens the effective electron

drift frequency, and thus stabilizes. In CSDX, the condition kyρ
2
s⟨vy⟩′′/ω∗e < 0 holds true,

and thus the azimuthal flow curvature stabilizes drift waves. In the following analysis, we

consider the case where kyρ
2
s⟨vθ⟩′′/ω∗e < 0. The Doppler-shifted frequency and linear growth

rate of drift wave are calculated using the dispersion relation Eq. (10), which are

ωk
∼=

ω∗e

1 + k2
⊥ρ

2
s

− kykzρscs⟨vz⟩′

ω∗e
, (11)

γk ∼=
1

k2
zD∥

ω∗e
2

(1 + k2
⊥ρ

2
s)

2

(
k2
⊥ρ

2
s

1 + k2
⊥ρ

2
s

− kyρ
2
s⟨vy⟩′′

ω∗e
+

kykzρscs⟨vz⟩′

ω∗e
2

)
. (12)

The PSFI threshold for axial flow shear is:

|⟨vz⟩′|crit =
1

|kykzρscs|

[
ω∗e

2(1 + k2
⊥ρ

2
s)

4[(1 + k2
⊥ρ

2
s)

2 + δ2]
+ k2

zc
2
s

]
. (13)

When exceeding the threshold given by Eq. (13), axial flow shear drives turbulence as a

free energy source. Note that in the regime relevant to CSDX where kyρ
2
s⟨vy⟩′′/ω∗e < 0, the

azimuthal flow lowers the PSFI threshold.

B. Azimuthal flow effects on axial residual stress

In this subsection, we show that azimuthal flow shear slows the modulational growth of

the seed axial flow shear. Moreover, azimuthal flow shear reduces the magnitudes of both

residual stress and turbulent viscosity. Consequently, the axial Reynolds power is reduced by

azimuthal flow shear. Note this agrees with the trend shown in Fig. 2. However, azimuthal

flow does not affect the stationary axial flow shear, to leading order. This follows because

the axial flow is saturated by the turbulent viscosity. The effects of azimuthal flow shear

cancels, to leading order, in determining the stationary axial flow shear, which is given by

⟨vz⟩′ ∼ ΠRes
xz /χDW

z .

First, we calculate the axial Reynolds stress with azimuthal flow effects included, following

the same procedures presented in Ref. [12]. The axial Reynolds stress can be written as a
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diffusive momentum flux plus a residual stress, which is

⟨ṽxṽz⟩ = −χz
∂⟨vz⟩
∂x

+ΠRes
xz . (14)

From Eq. (3), we obtain that

ṽz ∼=
|γk|

(ωk − ky⟨vy⟩′∆x)
2kzc

2
sϕ̃

∼=
1

(V ′ − 1)2
|γk|
ω2
k

kzc
2
sϕ̃.

Here, V ′ ≡ ky⟨vy⟩′∆x/ωk ∼ ⟨vy⟩∆xLn/csρsLVy . Thus, in the non-resonant regime (i.e.,

|⟨vy⟩|/cs ≫ ∆xLn/ρsLVy , so |V ′| ≫ 1), we obtain that

ṽz ∼
1

|V ′|2
|γk|
ω2
k

kzc
2
sϕ̃. (15)

As a result, the turbulent viscosity and residual stress are

χDW
z

∼=
∑
k

1

|V ′|2
1

k2
zD∥

[
k2
⊥ρ

2
s

1 + k2
⊥ρ

2
s

+
|kyρ2s⟨vy⟩′′|

ω∗e

]
k2
yρ

2
s|ϕk|2, (16)

ΠRes
xz

∼=
∑
k

1

|V ′|2
1

k2
zD∥

(2 + k2
⊥ρ

2
s)

[
k2
⊥ρ

2
s

1 + k2
⊥ρ

2
s

+
|kyρ2s⟨vy⟩′′|

ω∗e
+

kykzρscs⟨vz⟩′

ω∗e
2

]
kykzρscs|ϕk|2.

(17)

The residual stress requires symmetry breaking in the ky–kz space. Note the ‘nega-

tive viscosity piece in Eq. (17) (i.e., the third term in brackets, which is proportional to

kykzρscs⟨vz⟩′) is negligible compared to the term proportional to k2
⊥ρ

2
s/(1 + k2

⊥ρ
2
s) (i.e., the

first term in brackets). Therefore, symmetry breaking in the ky–kz space is necessary for a

nonzero ΠRes
xz . Absent magnetic shear, a seed axial flow shear breaks the symmetry and is

self-amplified through a modulational instability. As a result, the broken symmetry in the

ky–kz space emerges, along with a finite axial flow shear profile. Hence, with this spectral

asymmetry, the residual stress, to leading order, is

ΠRes
xz

∼=
∑

kykz⟨vz⟩′>0

1

|V ′|2
2 + k2

⊥ρ
2
s

k2
zD∥

k2
⊥ρ

2
s

1 + k2
⊥ρ

2
s

kykzρscsIk, (18)

where Ik = |ϕk|2(kykz⟨vz⟩′ > 0) − |ϕk|2(kykz⟨vz⟩′ < 0) accounts for the spectral imbalance.

Therefore, both the residual stress and turbulent viscosity driven by drift waves are reduced
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by azimuthal flow shear. Consequently, the axial Reynolds power is reduced by azimuthal

flow shear, yielding PR
z ∼ |V ′|−2. This agrees with the trend shown by Fig. 2.

Next, we show that the azimuthal flow shear also impedes the self-amplification of seed

flow shear, i.e., azimuthal flow shear slows down the modulational growth of seed flow shear.

In response to a seed axial flow shear δ⟨vz⟩′, the residual stress induces a negative diffusion

of momentum flux, i.e.,

δΠRes
xz

∼= |χRes
z |δ⟨vz⟩′, (19)

where the negative viscosity increment is

χRes
z

∼= − 1

|V ′|2
1

D∥

k2
yρ

2
sc

2
s

ω∗e
2

∑
k

(1 + k2
⊥ρ

2
s)(4 + k2

⊥ρ
2
s)|ϕk|2. (20)

The growth rate of the flow shear modulation is determined by the difference between |χRes
z |

and χz, i.e.,

γq = q2r(|χRes
z | − χDW

z )

∼= q2r
∑
k

|ϕk|2

|V ′|2
k2
yρ

2
sc

2
s

k2
zD∥

(
K − k2

⊥ρ
2
s

1 + k2
⊥ρ

2
s

)(
1 + β

|kyρ2s⟨vy⟩′′|
ω∗e

)
, (21)

where qr is the radial modenumber of the shear modulation, K ≡ (1 + k2
⊥ρ

2
s)(4 +

k2
⊥ρ

2
s)k

2
zc

2
s/ω

2
∗e, and β ≡ (2K − 1)

/(
K − k2⊥ρ2s

1+k2⊥ρ2s

)
. When the negative viscosity induced

by the residual stress exceeds the turbulent viscosity due to drift waves, the test flow shear

is reinforced via modulational instability. This means K > k2
⊥ρ

2
s/(1 + k2

⊥ρ
2
s) is required for

modulational growth (i.e., γq > 0) of the test shear. For drift waves, we obtain kyρs ∼ 1,

and thus K ∼ (2 + k2
xρ

2
s)(5 + k2

xρ
2
s) > 10k2

zL
2
n and 0.5 < k2

⊥ρ
2
s/(1 + k2

⊥ρ
2
s) < 1. Modula-

tional instability requires K > k2
⊥ρ

2
s/(1 + k2

⊥ρ
2
s) > 0.5, which is possible for drift waves. As

shown by Eq. (21), the modulational growth rate of the seed flow shear decreases when the

azimuthal flow shear increases.
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C. Azimuthal flow effects on stationary flow shear profile

The evolution of mean axial flow is described by

∂⟨vz⟩
∂t

+
∂

∂x
⟨ṽxṽz⟩ = −∂P

∂z
− νni (⟨vz⟩ − Vn) . (22)

The pressure drop in the axial direction is due to the heating on one end of the linear

device. In CSDX, this pressure drop is weaker than the Reynolds force (−∂x⟨ṽxṽz⟩) by an

order of magnitude [4]. Frictions between plasma and neutral flows damp the axial flow

in the edge region, where neutral particles concentrate. Hence, neutral damping sets the

boundary condition for the axial flow profile. Therefore, in the central region of CSDX, the

axial flow is generated and saturated by the axial Reynolds stress. The stationary state flow

is then determined by ⟨ṽxṽz⟩ = 0. As a result, the stationary axial flow shear, to leading

order, is

⟨vz⟩′ =
ΠRes

xz

χDW
z

∼ (2 + k2
⊥ρ

2
s)kzcs/kyρs. (23)

The azimuthal flow shear reduces both ΠRes
xz and χDW

z by the same factor |V ′|−2. Hence,

this reduction effect cancels out to leading order in the stationary axial flow shear, which

is determined by the ratio ΠRes
xz /χDW

z . Therefore, the azimuthal flow shear does not affect

the saturated axial flow shear to leading order. Note the relation δΠRes
xz ∝ δ⟨vz⟩′ is valid

only for weak δ⟨vz⟩′. As the axial flow shear grows larger, due to modulational instability,

the residual stress is no longer linearly proportional to ⟨vz⟩′. As shown by Fig. 3, when

⟨vz⟩′ > 0.05cs/ρs, the axial Reynolds power decreases with ⟨vz⟩′, which means the residual

stress is not linearly proportional to ⟨vz⟩′. Therefore, ⟨vz⟩′ = ΠRes
xz /χDW

z can be used to

calculate the saturated flow shear.

IV. SUMMARY OF MAIN RESULTS

In this work, we study the coupling of azimuthal and axial flows in CSDX, absent magnetic

shear. We consider the regime of weak axial flow shear, such that V ′
z is far below the PSFI

threshold, i.e., V ′
z ≪ |V ′

z |crit. In particular, we study how incremental changes of flow shears

affect the production branching ratio PR
z /PR

y . Also, we investigate the effects of azimuthal

flow shear on intrinsic axial flow generation and saturation, absent magnetic shear. The
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main results are:

• Increasing azimuthal flow shear reduces the branching ratio, which is measured by the

ratio of axial to azimuthal Reynolds powers, i.e., PR
z /PR

y .

• When axial flow shear increases, PR
z /PR

y first increases but then decreases to zero.

PR
z /PR

y decreases because as axial flow shear increases, the turbulent diffusion of

axial momentum approaches the axial residual stress in magnitude, such that the

axial Reynolds stress decreases to zero. The intrinsic axial flow shear saturates at

|V ′
z |max

∼= 0.1cs/ρs, which is far below the PSFI threshold.

• When kyρ
2
s⟨vy⟩′′/ω∗e < 0, azimuthal flows stabilize drift waves by weakening the ef-

fective electron drift frequency ω∗e ≡ ω∗e + kyρ
2
s⟨vy⟩′′, so the drift wave growth rate is

reduced by the azimuthal flow curvature.

• Azimuthal flow shear slows modulational growth of seed axial flow shear, and thus

reduces the production of intrinsic axial flow, by shear suppression.

• Azimuthal flow shear reduces both axial residual stress (ΠRes
xz ) and turbulent viscos-

ity driven by drift waves (χDW
z ) by the same factor, i.e., both ΠRes

xz and χDW
z scale

with the azimuthal flow shear as |V ′|−2 ∼ |⟨vy⟩′|−2∆−2
x L−2

n ρ2sc
2
s. So does the axial

Reynolds power, i.e., PR
z ∼ |V ′|−2, which agrees with the trend that PR

z /PR
y decreases

as azimuthal flow shear increases.

• Azimuthal flow shear does not affect the saturated axial flow shear to leading order,

because ⟨vz⟩′ = ΠRes
xz /χDW

z and the reduction by ⟨vy⟩′ cancels.

V. DISCUSSION

The results in this work can be used to develop testable predictions for simulation and

experimental studies on interaction of parallel and perpendicular flows. This study is de-

veloped upon the regime with straight magnetic fields. This makes the results relevant to

linear devices and flat-q regions in tokamaks. In tokamaks, the combination of weak mag-

netic shear (i.e., flat q profile) and strong toroidal rotation are required for the formation of

enhanced confinement states [2], such as internal transport barriers. Thus, the turbulence
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energy apportionment between poloidal (i.e., zonal) and toroidal flows absent magnetic shear

is of interest.

Further study on turbulence and flows in CSDX could include:

• Effects of extrinsic axial flows driven by axial momentum source on turbulence and

intrinsic flows.

• Physics of transport barrier formation.

In the regime of intrinsic parallel flows, the feedback of axial flow shear on the turbulence–

flow system is weaker than that of azimuthal flow shear in CSDX, because |kzV ′
z/kθV

′
θ | ≪ 1.

As a result, the turbulence is regulated primarily by V ′
θ , and axial flow is parasitic. A

non-parasitic axial flow regime is achievable with an external axial momentum source. Of

course, when the enhanced axial flow shear exceeds the PSFI threshold, the resulting PSFI

turbulence can drive zonal flow via strong acoustic coupling [25, 26]. Even below the PSFI

threshold, externally driven axial flow shear can enhance the regulating effect of axial flow

on turbulence. When |kzV ′
z,tot| is comparable to |kθV ′

θ |, the axial flow shear will have a strong

effect on vorticity flux, mode structure, and fluctuation intensity. In both ways, the external

axial momentum source can enhance the interaction of axial and azimuthal flows in CSDX.

Moreover, the axial momentum source invokes the interaction of intrinsic and extrinsic axial

flows, which is analogous to the ‘cancellation’ experiment [27]. This enables detailed studies

on the modulational growth and saturation of seed axial flow shears in CSDX.

The external axial flow source allows us to explore the physics of transport barrier forma-

tion. Both strong toroidal rotation and weak magnetic shear are necessary for the formation

of enhanced confinement states, e.g., states with internal transport barriers [2]. A linear

device with zero magnetic shear and controlled axial flow shear–such as CSDX–is an ideal

testbed to study the physics of such states. Increasing the axial flow shear can enhance

zonal flow generation via the acoustic coupling [25, 26]. As a result, the enhanced zonal

flow shear can lead to the formation of a transport barrier. In this way, we can study (1)

what determines the axial flow shear threshold and (2) how the states of intrinsic axial flows

evolve before and after the transition. These are important for understanding the dynamics

of the flux-driven turbulence–zonal flow–axial flow ecology.
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[14] Ö. D. Gürcan, P. H. Diamond, P. Hennequin, C. J. McDevitt, X. Garbet, and C. Bourdelle,

Physics of Plasmas 17, 112309 (2010).

[15] N. Mattor and P. H. Diamond, Physics of Fluids 31, 1180 (1988).

[16] J. C. Li and P. H. Diamond, Physics of Plasmas 24, 032117 (2017).

[17] G. I. Taylor, Philosophical Transactions of the Royal Society of London. Series A, Containing

Papers of a Mathematical or Physical Character 215, 1 (1915).

[18] P. H. Diamond and Y. Kim, Physics of Fluids B: Plasma Physics 3, 1626 (1991).
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