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This paper presents a theory for the collapse of the edge zonal shear layer, as observed

at the density limit at low β. The paper investigates the scaling of the transport

and mean profiles with the adiabaticity parameter α, with special emphasizes on

fluxes relevant to zonal flow generation. We show that the adiabaticity parameter

characterizes the strength of production of zonal flows and so determines the state of

turbulence. A 1D reduced model that self-consistently describes the spatiotemporal

evolution of the mean density n̄, the azimuthal flow v̄y and the turbulent potential

enstrophy ε = 〈(ñ−∇2φ̃)2/2〉 - related to fluctuation intensity - is presented. Quasi-

linear analysis determines how the particle flux Γn and vorticity flux Π = −χy∇2vy+

Πres scale with α, in both hydrodynamic and adiabatic regimes. As the plasma

response passes from adiabatic (α > 1) to hydrodynamic (α < 1), the particle flux

Γn is enhanced and the turbulent viscosity χy increases. However, the residual flux

Πres - which drives the flow - drops with α. As a result, the mean vorticity gradient

∇2v̄y = Πres/χy - representative of the strength of the shear - also drops. The shear

layer then collapses and turbulence is enhanced. The collapse is due to a decrease

in ZF production, not an increase in damping. A physical picture for the onset of

collapse is presented. The findings of this paper are used to motivate an explanation

of the phenomenology of low β density limit evolution. A change from adiabatic

(α = k2zv
2
th/(|ω|νei) > 1) to hydrodynamic (α < 1) electron dynamics is associated

with the density limit.
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I. Introduction

Drift wave (DW) turbulence is one of the fundamental issues in magnetically confined

plasmas, and continues to be a subject of interest for many experimental, theoretical and

numerical studies1,2. Driven by radial density gradients, drift wave turbulence enhances

particle and thermal transport, and increases the loss of particles and heat from fusion

devices. One mechanism that regulates DW fluctuations is the self-generation of sheared

zonal flows (ZFs) by turbulent Reynolds stresses. These flows decorrelate turbulent eddies

by shearing, thus allowing for energy transfer between disparate scales of the plasma3,4.

ZFs are therefore often linked to L − H transition and internal transport barrier (ITB)

formation5. Many models describing the regulations of DWs by ZFs have been proposed, so

much so that the problem is now referred to as DW/ZF turbulence.

In another vein, there is evidence to suggest that ZFs collapse when the plasma density

approaches the Greenwald density limit nG in L-mode6,7. This limit is an operational bound

on the plasma density, and represents the maximum attainable density before the plasma

develops strong MHD activity8. Increasing the density to and above nG leads ultimately

to degradation of particle confinement and sometimes - but not always - disruption. A

symptomatic series of phenomena are frequently manifested at the density limit. These

include, but are not limited to: edge cooling, multifaceted asymmetric radiation from edge

(MARFE), current shrinkage and weakening of the edge shear E × B layers. Studies of

the long range correlation (LRC)6 of edge turbulence revealed a drop in LRC as n → nG,

suggesting a weakening of turbulence driven zonal flows as the density limit is approached.

A recent experiment in the HL-2A tokamak7 showed that as n̄ approaches nG, the edge shear

flow collapses. This is accompanied by an enhancement of the turbulent particle flux near

the separatrix as the plasma density increases in these ohmic L-mode discharges. Cooling

of the edge plasma and decrease in the Reynolds force responsible for driving the zonal

flow were also observed as n̄/nG increased. Notably, there was a significant decrease in

the adiabaticity parameter α = k2zv
2
th/(νei|ω|) from 3 to 0.5, as n̄ was increased. Here |ω|

represents the frequency of the DW unstable mode. In a relevant and related vein (though

not directly concerned with density limits), Schmid et al. deduced the weakening of zonal

flow production at high collisionality. In that study, a direct experimental verification of the

importance of collisionality for mesoscale (i.e. ZF) structure formation was reported, and a

3



decrease in both nonlinear energy transfer and the zonal flow contribution to the spectrum

was observed.

A conventional approach is to attribute these observations to an increase in the plasma

collisionality with n̄, and to an increase in the damping of the ZFs8,9. Increasing the plasma

density boosts the collisional damping of zonal flows, thus inhibiting the self-regulation of

turbulence10–12. As a result, transport of particles and heat is enhanced, and plasma confine-

ment degrades. Alternatively, another approach links these observations to the development

of additional linear instabilities, such as resistive ballooning modes, in the edge of the toka-

mak13–15. The onset of resistive ballooning modes is linked to k2zv
2
th/(νei|ω|) dropping below

unity. These additional instabilities are thought to enhance transport and lead to further

deterioration of the plasma confinement. To this end, we note however the low values in β

achieved in the HL-2A experiment mentioned above, where 0.01 < β < 0.02.

Motivated by the experimental observations, we present a model that investigates turbu-

lence and the collapse of the plasma edge shear layer in the hydrodynamic electron limit.

Specifically, we present a theory for the evolution of turbulence and mean profiles (including

flows) as the adiabaticity parameter α decreases below unity that is, as the plasma response

passes from the adiabatic limit (α � 1) to the hydrodynamic limit (α � 1). Interestingly

enough, findings of this paper are easily applicable to the density limit experiments, since

α = k2zv
2
th/(|ω|νei) ∼ T

5/2
e /n̄ (for |ω| fixed). For |ω|∼ |ω?|, as for drift wave turbulence,

α ∼ T 2
e /n̄ (for kθρs fixed). For the parameters of the HL-2A experiments, it is quite unlikely

that resistive ballooning modes are excited. Thus we work within the framework of a drift

wave model. A particularly simple model proposed by Hasegawa and Wakatani describes

the dynamics of two-dimensional (2D) edge drift wave turbulence in a collisional plasma in

the presence of a constant magnetic field. This generic system of equations describes the

excitation and damping of unstable modes in terms of a few parameters related to plasma

collisionality, leading to a stationary turbulence level without external drive. In particu-

lar, the Hasegawa-Wakatani system of equations remains a valid model for edge turbulence

dynamics at modest β. Although multiple studies investigating the characteristics of turbu-

lence in the hydrodynamic limit have been published, no theoretical or physical explanation

of why the shear flow collapses and/or why drift wave turbulence is enhanced for α < 1

was presented. Recently, Schmid et al.16 did present an experimental study of this subject.

In fact, most studies of ZF behavior in the hydrodynamic electron regime simply appeal to
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numerical results that show strong turbulence and weak zonal flows in the hydrodynamic

limit17–20, and verify the usual power laws of turbulence energy in 2D for this limit21.

This paper addresses these questions by presenting a simple reduced description for trans-

port enhancement and weakening of the edge shear layer in the hydrodynamic electron

limit. The model is derived from the Hasegawa-Wakatani (HW) equations for collisional

drift waves, and self-consistently studies space and time evolution of the mean density n̄,

mean azimuthal flow v̄y and turbulent potential enstrophy ε. The model determines the role

of the Reynolds stress 〈ṽxṽy〉 in the feedback loop between flows and turbulence, and gives

additional insight into the DW/ZF relation in the hydrodynamic electron limit. Quasi-linear

analysis shows that both the particle flux Γn and the turbulent viscosity χy are enhanced as α

decreases. However, the residual vorticity stress Πres, which accelerates the flow, is reduced

as α increases. The mean vorticity gradient equal to Πres/χy is then reduced, and the edge

shear layer collapses. As a result, transport of particles and heat increases. These findings

are relevant to the density limit experiment, as α ∝ T 2
e /n̄. When n̄ increases, α decreases,

and Πres/χy is reduced. The plasma production of zonal flows declines and turbulence and

transport increase. Thermal and particle transport increase, thereby triggering cooling of

the edge plasma, in part because of inward turbulence spreading. For constant pressure, a

drop in plasma temperature Te leads to further increase in the density and feedback loop

between Te and n̄ forms.

We give a physical explanation of zonal flow collapse based on energy and momentum

density flux behavior in the adiabatic and hydrodynamic regimes. In the adiabatic regime,

the momentum flux scales as 〈ṽxṽy〉 ∝ −〈krkθ〉, where kr and kθ are the radial and azimuthal

wavenumbers respectively. The group velocity vgr, at which the wave energy density prop-

agates 〈vgrε〉, scales as vgr ∝ −〈krkθ〉vd, where the electron diamagnetic velocity vd < 0.

With vgr > 0, the relation between the flux of wave energy density and momentum implies

a counter-flow spin up, i.e., an incoming wave momentum flux occurs for an outgoing wave

energy density flux as shown in Fig.1. Alternatively put, a system of drift wave - zonal flow

turbulence naturally tends to converge zonal momentum into regions of wave excitation,

from which wave energy radiates. This promotes the production of zonal flows in the adia-

batic regime. In the hydrodynamic limit however, the group velocity does not scale directly

with kθ. Thus, the strong link between the two fluxes is broken, and so the familiar pattern

of zonal flow amplification in regions from which wave energy radiates no longer holds. The
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familiar tilt-and-stretch mechanism does not apply. This simple idea explains why zonal

flows are not produced in the hydrodynamic regime. We comment here that the topic of

density limits is an extremely complex and broad one, involving many different physical

processes9. The scenario analyzed here is relevant but not universal. Other explanations are

possible. In particular, the physics of H-mode density limits, which are necessarily coupled

to the H → L back transition, requires significant further consideration.

FIG. 1: Outgoing wave energy flux and incoming momentum flux from/to perturbation in
the adiabatic regime.

The rest of the paper is organized as follows: Section (II) gives the linear response analysis

of the basic Hasegawa-Wakatani system, as well as solution of the DW dispersion relation in

both the adiabatic and hydrodynamic limits. Section (III) introduces the reduced model used

to describe the evolution of the three fields: n̄, v̄y and ε. In Section (IV), we calculate the

expressions for the particle flux, the vorticity flux and the Reynolds work in both adiabatic

and hydrodynamic limits. The latter reflects the potential enstrophy exchange between

fluctuations and mean flow. The model is then simplified to a predator/prey model by slaving

the expression for ε in the equations for n̄ and v̄y in Section (V). Section (VI) gives a physical

argument as to why zonal flow formation is weak in the hydrodynamic limit. Variations

of the mean vorticity gradient Πres/χy, as well as changes in the scaling of the vorticity

flux 〈ṽx∇2
⊥φ〉 are examined, in order to characterize the mesoscopic plasma response as α

decreases. The drop in zonal flow drive is reconciled with the persistence of potential vorticity

mixing in the hydrodynamic limit. Section (VII) interprets the experimental observations

obtained in density limit experiments and in studies of edge turbulence at high collisionality
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from the perspective of the collapse of ZFs in the hydrodynamic electron limit. A scenario

linking shear layer collapse to the density limit is suggested. Finally, conclusions and future

work are discussed in Section (VIII).

II. Basic System and Linear Stability Analysis

In a box of dimensions: 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly, 0 ≤ z ≤ Lz, the equations for

the density n and vorticity ∇2φ in a nonuniform plasma with density n0(x) and constant

magnetic field B = Bẑ are22:

dn

dt
= −v

2
th

νei
∇2
‖(φ− n) +D0∇2n (1a)

d∇2φ

dt
= −v

2
th

νei
∇2
‖(φ− n) + µ0∇2(∇2φ) (1b)

Here the fields are normalized as: n ≡ n/n0, φ ≡ eφ/Te, t ≡ ωcit, length ≡ length/ρs,

vth ≡ vth/cs and νei ≡ νei/ωci. The average plasma density, the electron temperature and

thermal velocity, as well as the plasma sound speed are n0, Te, vth and cs respectively. ωci is

the ion cyclotron frequency, and ρs = cs/ωci is the ion Larmor radius with temperature Te.

The collisional diffusion coefficients D0 and µ0 dissipate energy at small scales by frictional

drag through forward energy cascade. The electron parallel diffusion rate α̂ = −v2th∇2
‖/νei =

k2zv
2
th/νei couples the vorticity fluctuations to those in the density profile. The convective

derivative is equal to: d/dt = ∂t + (ẑ × ∇φ).∇ = ∂t + vE.∇ where vE is the E × B

drift. The fields are decomposed into a perturbation and a zonally averaged part: f =

f̄(x, t) + f̃(x, y, z, t), where the averaging is preformed over the directions of symmetry y

and z:

〈f〉 = f̄ =
1

LyLz

∫ Ly

0

∫ Lz

0

fdydz

Equations for the density and vorticity fluctuations are written as:

∂tñ+ ṽx.∇n̄ = −v
2
th

νei
∇2
‖(φ̃− ñ)− {φ̃, ñ}+D0∇2ñ (2a)

∂t∇2φ̃+ ṽx.∇∇2φ = −v
2
th

νei
∇2
‖(φ̃− ñ)− {φ̃,∇2φ̃}+ µ0∇2(∇2φ̃) (2b)
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Here the mean flow shear ∇2φ in eq.(2b) is self-generated by the Reynolds stress 〈ṽxṽy〉, and

is driven by the DW interactions. Based in the triad coupling, this internal shear results

from nonlinear energy transfer related, but not identical to, the inverse energy cascade in

a 2D fluid. The nonlinear advection terms are expressed as Poisson brackets: {f, g} =

∂xf∂yg − ∂yf∂xg and represent spatial scattering of the fluctuation energy.

In the Hasegawa-Wakatani (HW) system, the plasma response and the character of the

flow are mainly determined by three parameters: the collisional diffusion coefficients D0

and µ0, and the adiabaticity parameter α = k2zv
2
th/(νei|ω|). While D0 and µ0 regulate the

dissipation of energy at small scales, α determines the efficiency of zonal flow production,

and controls its mescocopic response. Defined as the ratio between the parallel diffusion

rate and the drift frequency, α controls the phase difference between φ̃ and ñ, and thus the

transport. When α > 1, the plasma response is near adiabatic, φ̃ and ñ are closely coupled,

and ñ ' φ̃. The Hasegawa-Wakatani system effectively reduces then to the Hasegawa-Mima

equation23, with a phase shift between ñ and φ̃. In the opposite limit however, α < 1, the

plasma response is said to be hydrodynamic. Eqs.(2a-2b) are then weakly coupled, and the

ñ dynamics resemble that of a passive scalar. Moreover, the vorticity equation tends toward

that for a 2D Navier-Stokes fluid19.

For a linear stability analysis of the HW equations, we write the fluctuation fields as:

f̃m = δfm(x)ei[kθy+kzz−ωt] with ω = ωr + i|γm|. Here ωr, |γm|, kθ and kz are the linear

eigenfrequency, the growth rate, the azimuthal and the parallel wavenumbers of the unstable

mode respectively. The drift wave dispersion relation is then:

ω2 + i
α̂

k2⊥ρ
2
s

[
ω(1 + k2⊥ρ

2
s)− ω?

]
= 0 (3)

where ω? = kθ|vd|= −kθρscs∇n̄ > 0 is the electron drift frequency, and vd = ρscs∇n̄ < 0 is

the electron diamagnetic drift velocity. The solution of eq.(3) is given by:

ω =
1

2

(
− i α̂(1 + k2⊥ρ

2
s)

k2⊥ρ
2
s

+

√
4iω?α̂

k2⊥ρ
2
s

−
( α̂(1 + k2⊥ρ

2
s)

k2⊥ρ
2
s

)2)
(4)

This expression is simplified, according to the magnitude of α̂/|ω|, i.e., the magnitude of α.

In the adiabatic limit: (α� 1 and α̂� |ω|)
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When the parallel diffusion rate k2zv
2
th/νei is larger than both the drift frequency |ω| and the

electron diamagnetic frequency |ω?|, eq.(4) reduces to:

ωadiabatic =
ω?

1 + k2⊥ρ
2
s

+ i
ω?2k2⊥ρ

2
s

α̂
(5)

In the adiabatic limit, ωr does not depend on α̂. However, the growth rate |γm| is propor-

tional to 1/α̂. For large α̂, the growth rate is |γm|� 1, and the drift wave eigenfrequency is

simply written as:

ωadiabatic ' ωr = ω?(1 + k2⊥ρ
2
s)
−1 (6)

In the hydrodynamic limit: (α� 1 and α̂� |ω|)

When the parallel diffusion rate k2zv
2
th/νei is much smaller than |ω|, the expression for the

frequency reads:

ωhydrodynamic '
1

2

(
− i α̂(1 + k2⊥ρ

2
s)

k2⊥ρ
2
s

+

√
4iα̂ω?

k2⊥ρ
2
s

)
'

√
ω?α̂

2k2⊥ρ
2
s

(1 + i) (7)

In this limit, the growth rate and the real part are both equal to: ωr = |γm|=
√
ω?α̂/2k2⊥ρ

2
s.

In contrast to the adiabatic limit, the contribution of |γm| cannot be neglected in the ex-

pression for ωhydrodynamic.

A comparison of eq.(6) and eq.(7) shows that ωadiabatic is dominantly real, while ωhydrodynamic

involves a comparable real and imaginary part. While the motion of the drift waves is purely

oscillatory in the adiabatic limit, in the hydrodynamic limit, the dynamics of the perturba-

tion resembles that of a convective cell. This feature dictates the behavior of the flow in the

two plasma regimes.

III. Reduced Model

A. The equations

In this section, a 1D reduced model that self-consistently describes the evolution of turbu-

lence and plasma profiles is presented. The equations relating the time and space evolution

of the plasma mean density n̄, and mean vorticity ∇2φ are obtained by averaging eqs.(1a-1b)
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over the directions of symmetry:

∂tn̄ = −∂x〈ṽxñ〉+D0∇2n̄ (8a)

∂t∇2φ = −∂x〈ṽx∇2φ̃〉 − νin(v̄y − v̄n) + µ0∇2∇2φ (8b)

A neutral damping term proportional to the ion-neutral collision frequency νin ∝ nn, is

added to the mean vorticity equation. This term can be significant at the plasma edge. It

is a sink of energy transfered to larger scales, and so damps the zonal flows. The neutral

friction can be dropped from the mean vorticity equation if νin → 0, i.e., for low neutral

density nn.

In addition to eqs.(8a-8b), we formulate an equation for the fluctuation potential enstro-

phy ε = 〈(ñ − ∇2φ̃)2/2〉. The HW system locally conserves the potential vorticity defined

as q = n−∇2φ, up to viscosity and particle diffusivity. A linearized equation describing the

time evolution of the turbulent potential vorticity q̃ = ñ −∇2φ̃ is obtained by subtracting

eq.(2b) from eq.(2a):

∂q̃

∂t
+ ṽx.∇q̄ = −{φ̃, q̃}+ µ0∇2q =⇒ dq

dt
= µ0∇2q (9)

where q = q̄ + q̃, and µ0 and D0 are assumed to be of the same order. Eq.(9) represents

the conservation of the total potential vorticity up to viscous dissipation. Therefore, the

potential enstrophy ε = 〈q̃2〉/2 = 〈(ñ−∇2φ̃)2〉/2 is also conserved up to collisional diffusion.

This can be shown by multiplying eq.(9) by q̃ = ñ−∇2φ̃, and performing a zonal integral.

Detailed calculations can be found in ref.24–26. Here we simply write the time evolution

equation for the potential enstrophy density ε:

∂tε+ ∂xΓε = −(Γn − Π)(∂xn̄− ∂xxv̄y)− ε3/2 + P (10)

In eq.(10), Γn and Π are the particle and vorticity flux respectively, while ∂xn̄ and ∂xxv̄y

are the mean density and mean vorticity gradients respectively. The turbulent potential

enstrophy density flux Γε on the LHS represents the mesoscopic spreading of turbulence due

to the three wave coupling. Note Γε = 〈ṽxε〉 is nominally third order in fluctuation ampli-

tude. It thus is equivalent to the spatial flux of turbulence intensity - otherwise known as

10



”turbulence spreading”. The spreading flux Γε represents local scattering of the fluctuation

potential enstrophy density ε. Turbulence spreading enters here as a consequence of: i) the

fact that the model conserves potential vorticity and thus potential enstrophy, ii) the fact

that local potential enstrophy density evolution is determined (in part) by the divergence

of the flux of local potential enstrophy. The potential enstrophy density flux is written as:

Γε = −Dε∂xε = −l2mix
√
ε∂xε, where lmix = ṽxτc is the turbulent mixing length and τc is the

turbulence correlation time. The first term on the RHS of eq.(10) accounts for direct mean

flow-fluctuation coupling, and converts the mean potential enstrophy into fluctuation po-

tential enstrophy. This coupling term relates variations of the turbulent potential enstrophy

to those in the mean profile of n̄ and v̄y, via the particle flux Γn = 〈ṽxñ〉 and the vorticity

flux Π = 〈ṽx∇2φ̃〉. The second term on the RHS of eq.(10) represents the dissipation of

fluctuation potential enstrophy density at a rate
√
ε. This dissipation is due ultimately to

the collisional coefficients D0 and µ0. Lastly, the production term P represents an input of

the potential enstrophy due to linear growth, driven by the mean profiles. It is proportional

to ε and linear in γDW , the growth rate of the DW instability: P = γDW ε. Dropping the

neutral damping term from the vorticity equation, as well as the ¯. . . sign, we simplify the

notation by writing u = ∇2φ to obtain:

∂tn = −∂xΓn +D0∇2n (11a)

∂tu = −∂xΠ + µ0∇2u (11b)

∂tε+ ∂xΓε = −(Γn − Π)(∂xn− ∂xu)− ε3/2 + P (11c)

Written in 1D (in radius), this system models the evolution of DW intensity and the forma-

tion of zonal flows in the plasma. For this purpose, an expression for the mixing length lmix

is required.

One approach consists of considering a mixing length that exhibits a turbulence suppres-

sion through the azimuthal shear u = ∇vy:

lmix =
l0(

1 +
(l0∇u)2

ε

)δ (12)

where δ is a free parameter and l0 is an external dynamical turbulence production scale
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length. Eq.(12) exhibits a decorrelation of the turbulent structures by the flow shear u =

∇vy27: when the flow shear increases, the mixing length decreases. When lmix is reduced,

the production of potential enstrophy ε also drops, the mean profiles steepen, and a closed

feedback loop is obtained. In the particular case of weak or collapsed flow shear, u = ∇vy
is small (u = ∇vy ' 0) so a constant mixing length lmix ' l0 is appropriate. This is a

consequence of the absence of transport barrier dynamics in the phenomena of interest.

IV. Expressions for the Turbulent Fluxes

In addition to the expression for lmix, expressions for the turbulent fluxes 〈ṽxñ〉 and 〈ṽxṽy〉

are needed to close the model and solve eqs.(11a-11c). In this section, we use quasi linear

theory to calculate the expressions for the particle flux and vorticity flux.

A. The Particle Flux: 〈ñṽx〉

To calculate the expression for the particle flux 〈ñṽx〉, we write the electron density

fluctuation as ñ = φ̃+ h, where h is the deviation from the adiabatic response. Plugging in

eq.(2a), we obtain:

h =
ω? − ω
ω + iα̂

φ̃, ñ = φ̃+ h =

(
ω? + iα̂

ω + iα̂

)
φ̃

In the adiabatic limit, ω ' ω? and the following relation between ñ and φ̃ is recovered:

ñ =
(

1 − i(ω? − ω)/α̂
)
φ̃ ' φ̃28. For ṽx = −ikθρscsδφ, the expression for the particle flux

〈ñṽx〉 is:

Γn = −
[(α̂ + |γm|)
|ω + iα̂|2

d lnn

dx
+

α̂ωr

kθρscs|ω + iα̂|2
]
〈δv2x〉

' −(α̂ + |γm|)
|ω + iα̂|2

d lnn

dx
〈δv2x〉

= −D
n0

dn̄

dx

(13)

The particle diffusion coefficient is: D =
[
(α̂ + |γm|)/|ω + iα̂|2

]
〈δv2x〉. The expression for

the particle diffusion coefficient D depends on α̂, and changes as the plasma passes from the
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adiabatic to the hydrodynamic regime. We introduce next the factor f that represents the

fraction of the fluctuation energy εl2mix which is in the kinetic energy of radial motion:

〈δv2x〉 = fεl2mix =
〈δv2x〉

〈δn2〉+ 〈δv2x〉
εl2mix (14)

Using the expressions for ñ and ṽx, the expression for f is equal to:

f =
k2⊥ρ

2
s∣∣∣ω∗ + iα̂

ω + iα̂

∣∣∣2 + k2⊥ρ
2
s

=


k2⊥ρ

2
s

1 + k2⊥ρ
2
s

, in the adiabatic regime

1

|ω∗/α̂|+1
, in the hydrodynamic regime

(15)

In the adiabatic regime, the kinetic energy 〈δv2x〉 is less then 〈δn2〉, and the electron total

energy is mostly thermal/internal energy. Therefore, the factor f � 1. However, in the

hydrodynamic regime, the kinetic energy of the electrons rises as compared to 〈δn2〉, reflect-

ing an increase in the screening of ion diamagnetic oscillations such that f → 1. For small

values of k2⊥ρ
2
s � 1, the two limits of f are:f → k2⊥ρ

2
s, in the adiabatic regime

f → 1, in the hydrodynamic regime

Finally, for purely adiabatic DWs, the relation 〈δv2x〉 ' k2⊥ρ
2
sεl

2
mix is recovered.

B. The Vorticity Flux: 〈ṽx∇2
⊥φ〉

In addition to Γn, we calculate the vorticity flux Π = 〈ṽx∇2
⊥φ̃〉. This flux relates to the

Reynolds force that controls the relation between turbulence and zonal flows via the Taylor

identity: −∂x〈ṽxṽy〉 = 〈ṽx∇2
⊥φ̃〉. The Taylor identity directly links the zonal flow momentum

conservation to potential enstrophy balance29. To calculate Π, we use the vorticity equation
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and drop the neutral drag term for simplicity. The vorticity flux then follows as:

Π =
∑
m

−k
2
θρ

2
sc

2
s|γm|
|ω|2

|φ̃2|d
2v̄y
dx2

+ 2Re
[kθρscsα̂

ω

(
ω? − ω
ω + iα̂

)
|φ̃|2
]

= −χy
d〈∇2

⊥φ〉
dx

+ Πres

= −χy
d2v̄y
dx2

+ Πres

(16)

The first term of eq.(16) represents the diffusive flux, while the second term is the residual

stress, i.e., the non-diffusive flux driven by ∇n. The turbulent viscosity χy relating the mean

vorticity gradient d(∇v̄y)/dx to the vorticity flux Π is equal to:

χy =
∑
m

k2θρ
2
sc

2
s|γm|
|ω|2

|φ̃2|= |γm|〈δv
2
x〉

|ω|2
(17)

Here χy depends on the adiabaticity parameter, as both |γm| and |ω| are α̂-dependent. The

residual stress Πres resulting from coupling between the density and vorticity profiles is equal

to:

Πres =
kθρscsωciα̂

[
(ωr)2(ω? − ωr)− |γm|2(ωr + ω?)− ω?α̂|γm|

]
|ω|2×|ω + iα̂|2

〈φ̃2〉 (18)

Πres converts the driving particle flux into zonal (azimuthal) flow, and can accelerate v̄y

from rest. Similar to the expression for χy, Πres varies as α̂ changes, affecting thereby

the character of the flow in both plasma limits. In the adiabatic limit, an examination of

the expression for Πres shows that the residual stress is inversely proportional to α̂, i.e.,

Πres
adia ∝ 1/α̂. In the hydrodynamic limit however, the residual stress is directly proportional

to
√
α̂, i.e. Πres

hydro ∝
√
α̂, for α� 1.

C. Fluxes and Reynolds Work in Adiabatic and Hydrodynamic Limits.

The expressions for the particle and vorticity flux can be simplified depending on the

value of α̂, i.e., depending on the electron plasma response.

In the adiabatic limit: (α̂� |ω|)

In this limit, α� 1. The growth rate |γm|' 1/α� 1, and |ω|2' (ωr)2 =
[
ω?/(1 + k2⊥ρ

2
s)
]2

.

14



The expressions for the particle and vorticity fluxes in the adiabatic limit are:

n0Γn = −〈δv
2
x〉
α̂

dn̄

dx
' −εl

2
mix

α̂

dn̄

dx
(19a)

Π = −|γm|〈δv
2
x〉

|ω|2
d2v̄y
dx2
− ωci〈δv2x〉

α̂

dn̄

dx

( k2⊥ρ
2
s

1 + k2⊥ρ
2
s

)
' −εl

2
mix

α̂

d2v̄y
dx2
− ωciεl

2
mix

α̂

dn̄

dx
(19b)

Here 〈δv2x〉adiabatic = fadiabaticεl
2
mix = k2⊥ρ

2
sεl

2
mix/(1 + k2⊥ρ

2
s). Scalings of the particle flux Γn,

the turbulent viscosity χy and the residual stress Πres in the adiabatic limit are:

Γn ' −(εl2mix/α̂)∇n̄ (20a)

χy ' εl2mix/α̂ (20b)

Πres ' −(ωciεl
2
mix/α̂)∇n̄ (20c)

Here, Γn, χy and Πres are all inversely proportional to α In addition, both Γn and Πres are

proportional to ∇n. The expression for the Reynolds power density PRe that represents the

power exerted by the turbulence on the flow v̄y, is obtained by multiplying the Reynolds

force FRe = −∂x〈ṽxṽy〉 by the azimuthal flow v̄y. In the adiabatic limit, PRe is equal to:

PRe = −∂x〈ṽxṽy〉v̄y '
(
− ε

α̂

d2v̄y
dx2
− ωciε

α̂

dn̄

dx

)
v̄yl

2
mix (21)

In the (likely case of) absence of an external azimuthal momentum source, and for vanishing

Reynolds power density PRe = 0, the mean vorticity gradient is independent of α̂ and is

given by:
d2v̄y
dx2

=
Πres

χy
= −ωci

dn̄

dx
(22)

In the hydrodynamic limit: (α̂� |ω|)

For ωr = |γm|=
√
ω?α̂/(2k2⊥ρ

2
s), expressions for the particle and vorticity fluxes are equal

15



to:

n0Γn ' −

√
k2⊥ρ

2
s

2kθρscs

√
|dn̄/dx|

α̂
〈δv2x〉 ' −

εl2mix√
α̂|ω?|

dn̄

dx
(23a)

Π = −|γm|〈δv
2
x〉

|ω|2
d2v̄y
dx2
− ωci〈δv2x〉

kθρscs
.

√
k2⊥ρ

2
s

2

√
α̂

|ω?|

' − εl2mix√
α̂|ω?|

d2v̄y
dx2
− ωciε

√
α̂l2mix

|ω?|3/2
dn̄

dx
(23b)

Here we used 〈δv2x〉hydrodynamic = fhydrodynamicεl
2
mix = εl2mix/

[
|ω∗/α̂|+1

]
< εl2mix. Scalings of

the turbulent fluxes are then:

Γn ' −(εl2mix/
√
α̂|ω?|)∇n̄ (24a)

χy ' εl2mix/
√
α̂|∇n̄| (24b)

Πres ' −(ωciε
√
α̂l2mix/|ω?|3/2)∇n̄ (24c)

While Γn and χy are inversely proportional to
√
α̂ in the hydrodynamic limit, the residual

stress Πres scales proportionally with
√
α̂. We note here that in the hydrodynamic limit, the

particle flux Γhydron is proportional to
√
|∇n̄|, and the residual stress Πres

hydro is proportional

to 1/
√
|∇n̄|. Such superficially unusual scalings with |∇n̄| result from neglecting the contri-

butions of the diffusive damping related to D0 and µ0 in the density and vorticity equations,

while performing the linear analysis. Obviously, these should not be extrapolated to regimes

of very weak ∇n drive. In the hydrodynamic limit, the Reynolds power density is equal to:

PRe = −∂x〈ṽxṽy〉v̄y '
(
− ε√

α̂|∇n̄|
d2v̄y
dx2
− ωciε

√
α̂

|∇n̄|

)
v̄yl

2
mix (25)

and the vorticity gradient for PRe = 0 is directly proportional to α̂ and is equal to:

d2v̄y
dx2

= −ωciα̂
|ω?|

dn̄

dx
(26)
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V. Simplification by Slaving: A Predator-Prey Model

When the eddy turnover time τc = lmix/ṽx is smaller than the particle confinement time

[D∇2n̄/n̄]−1, the model can be reduced to a 2-field predator-prey model that evolves the

preys (n̄) and predators (v̄y) according to eqs.(11a-11b). Clearly, these predators do not exist

without the prey. A simplification of the previous model is achieved by slaving the expression

for ε to the mean profiles, and solving the equations for n̄ and v̄y. For slaved turbulence,

both potential enstrophy spreading and potential enstrophy production are dropped from

the ε equation because the eddy turnover time is shorter than the confinement time. The

potential enstrophy equation then reduces to the balance:

−(Γn − Π)(∂xn− ∂xu)− ε3/2 = 0 (27)

In the adiabatic limit: using eqs.(20a-20c), the expression for the potential enstrophy reduces

to:
√
εadia =

ω2
cil

2
mix

α̂

[(dn
dx
− du

dx

)2
− ωci

dn

dx

(dn
dx
− du

dx

)]
(28)

The second term on the RHS of eq.(28) arises from the contribution of the residual stress

Πres
adia. For a constant mixing length,

√
εadia is proportional to 1/α̂.

In the hydrodynamic limit: the expression for the turbulent potential enstrophy is obtained

from eqs.(24a-24c) as:
√
εhydro =

ω2
cil

2
mix√
|ω?|α̂

(dn
dx
− du

dx

)2
∝ 1√

α̂
(29)

Here
√
εhydro is proportional to 1/

√
α̂. Note that in the hydrodynamic limit, the contribution

of the residual stress to the expression for ε vanishes, as Πres
hydro ∝

√
α̂ → 0. A comparison

of eq.(28) and eq.(29) shows that, in the adiabatic limit, the potential enstrophy is low,

while ε is enhanced in the hydrodynamic limit. This is one reason why mesoscocpic zonal

flows are strong in the former case, while a state of enhanced turbulence dominates in the

hydrodynamic limit. In summary, the equations of the simplified model in the adiabatic and

17



hydrodynamic limits are:

∂tn = −∂xΓn +D0∇2n (30a)

∂tu = −∂xΠ + µ0∇2u (30b)

The expressions for the particle and vorticity fluxes are:

Γadian = −εl
2
mix

α̂

dn

dx
(31a)

Πadia = −εl
2
mix

α̂

du

dx
− ωciεl

2
mix

α̂

dn

dx
(31b)

√
εadia =

l2mix
α̂

[(dn
dx
− du

dx

)2
− ωci

dn

dx

(dn
dx
− du

dx

)]
(31c)

in the adiabatic limit, and:

Γhydron = − εl2mix√
α̂|ω?|

dn

dx
(32a)

Πhydro = − εl2mix√
α̂|dn/dx|

du

dx
− ωciε

√
α̂l2mix

|ω?|3/2
dn

dx
(32b)

√
εhydro =

l2mix√
|ω?|α̂

(dn
dx
− du

dx

)2
(32c)

in the hydrodynamic limit.

An examination of the turbulence suppression criterion RDT , previously introduced in

ref.24 as:

RDT =

∫
∂x〈ṽx∇2φ̃〉∇v̄ydx
−
∫
〈ñṽx〉dx

, (33)

shows that RDT decreases in the hydrodynamic limit. Here RDT is interpreted as the ratio

of the turbulent enstrophy destruction rate 1/τtransfer due to coupling to the zonal flow

through the vorticity flux or the Reynolds stress, as compared the turbulent enstrophy

production rate 1/τrelax due to the relaxation of the density gradient. In the hydrodynamic

limit, 1/τtransfer decreases because zonal flow production weakens.
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VI. Fate of Zonal Flows in the Hydrodynamic Limit α� 1

Numerical studies of the evolution of resistive DW turbulence in the HW model show an

enhancement of turbulence and a collapse of the zonal flows for hydrodynamic electrons18.

As α decreases, the ratio of the kinetic energy of the zonal flow (F ≡ 1/2
∫

(∂〈φ〉/∂x)2dxdy)

to the total kinetic energy (Ek ≡ 1/2
∫
|∇φ|2dxdy) decreases, showing a transition of the

plasma to a turbulence dominated state. In other words, when α drops below unity, zonal

flows collapse and turbulent fluctuations are enhanced. To explain these observations, we

present physical pictures that illustrate the sequence of events leading to the enhancement

of turbulence and to the collapse of the shear layer in the hydrodynamic electron limit.

A. Physical Picture: Energy-Momentum Flux Physics

A useful insight into why zonal flow production is weaker in the hydrodynamic regime

than in the adiabatic limit may be gleaned from the wave dispersion relation. In the adiabatic

regime, the standard drift wave dispersion relation directly links radial propagation (related

to group velocity) to Reynolds stress 〈ṽxṽy〉. In this limit, |ωr|� |γm|, suggesting the range

of wave propagation is large. The expression for the Reynolds stress is:

〈ṽxṽy〉 =
∑
k

ikrikθ
c2

B2
|φ̃k|2= −

∑
k

krkθ
c2

B2
|φ̃k|2 (34)

where kr and kθ are the radial and azimuthal wavenumbers, respectively. The wave energy

density flux 〈vgrε〉 is obtained by multiplying the group velocity vgr = −2ρ2skrkθvd/(1+k2⊥ρ
2
s)

2

by the energy:

〈vgrε〉 =
∑
k

−2ρ2s
krkθvd

(1 + k2⊥ρ
2
s)

2
× (1 + k2⊥ρ

2
s)
(eφ̃
Te

)2ρ2sc2s
2

(35a)

=
∑
k

−ρ4sc2s
(eφ̃
Te

)2 krkθvd
1 + k2⊥ρ

2
s

(35b)

With the electron diamagnetic velocity vd < 0, and the group velocity vgr > 0, the correlator

krkθ must be positive. This is to satisfy the causality condition that waves (for r > r0) be

outgoing from the region of excitation at r ' r0. The Reynolds stress 〈ṽxṽy〉 is thus < 0,
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while the energy flux 〈vgrε〉 is > 0. The causality relation implies a counter flow spin-up,

suggesting that for outgoing wave energy flux, there exists an incoming wave momentum

flux, as shown in Fig.1. Note this depends on only the most basic aspects of the drift wave

frequency.

In the hydrodynamic regime, however, the link of wave energy flux to Reynolds stress is

broken. The momentum flux is still given by eq.(34), but the group velocity vgr is:

vgr =
∂ωrhydro
∂kr

= − kr
k2⊥
ωrhydro

Note here that causality has no implication for 〈kθkr〉, and neither for the Reynolds stress,

since vgr does not scale directly with kθ (the wavenumber in the direction of symmetry). In

the hydrodynamic limit, there is no causality constraint on the direction of eddy tilt, so the

familiar tilt and stretch mechanism in not effective. Moreover, the waves have |ωr|= |γm|,

suggesting limited range of propagation.

B. Scalings of Transport Fluxes with α

When the adiabaticity parameter α decreases below unity, the system passes from the

adiabatic to the hydrodynamic regime. According to the scalings of eqs.(20) and eqs.(24),

the particle flux scaling changes from Γadia ∝ 1/α with α > 1 to Γhydro ∝
√

1/α with α < 1.

The turbulent diffusivity χy that relates the vorticity flux to the vorticity gradient also

exhibits the same scaling. The residual stress on the other hand, drops from Πres
adia ∝ 1/α to

Πres
hydro ∝

√
α. Scalings of the transport fluxes are summarized in table (I). An interpretation

of the analytical results shows that the Reynolds power (which generates the zonal flow

underlying suppression) drops with α. In the absence of external momentum sources and

for turbulence, the diffusive vorticity flux balances the residual stress. The mean vorticity

gradient shown in Fig.2 then equals:

−χy
d2v̄y
dx2

+ Πres = 0 =⇒ d∇v̄y
dx

=
Πres

χy
(36)

Fig.2 explains the significance of the vorticity gradient as a measure of the net strength of

the shear layer. In the adiabatic limit, the ratio between the residual stress and the turbulent
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Plasma Response Adiabatic Hydrodynamic
α� 1 α� 1

Turbulent enstrophy
√
ε

√
ε ∝ 1/α

√
ε ∝ 1/

√
α

Particle Flux eq.(20a) eq.(24a)

Γ Γ ∝ 1/α Γ ∝ 1/
√
α

Turbulent Viscosity eq.(20b) eq.(24b)

χy χy ∝ 1/α χy ∝ 1/
√
α

Residual Stress eq.(20c) eq.(24c)

Πres Πres ∝ −1/α Πres ∝ −
√
α

Πres

χy
= (ωci∇n̄)×

( α

|ω?|

)0 ( α

|ω?|

)
TABLE I: Scalings of the turbulent enstrophy ε, transport fluxes and

vorticity gradient with α in both adiabatic and hydrodynamic regimes.

viscosity is independent of α. In the hydrodynamic limit, Πres/χy is directly proportional to

α. As the plasma transitions from the adiabatic to the hydrodynamic regime, the residual

stress Πres weakens, while the turbulent diffusivity χy increases. As a result, the ratio

Πres/χy - which indicates the plasma capacity to produce mesoscopic flows - drops. When

the plasma production of zonal flows drops, turbulence is not effectively regulated and

anomalous transport increases.

C. Potential Vorticity Mixing and Zonal Shear Collapse

It is useful to examine the flow generation in the adiabatic and hydrodynamic regimes

from the perspective of potential vorticity (PV) dynamics. The key concept here is that

zonal flows are formed as a consequence of PV mixing3, which in a system with mean

inhomogeneity necessitates trade-offs between mean and fluctuating PV. The classic example

follows from the observation that for a rotating flow, the total vorticity: ~ω +2~Ω is frozen
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FIG. 2: A jump in the flow shear (in blue) over a scale length l is equivalent to a vorticity
gradient on that scale.

in to the fluid. If ~Ω = ~Ω(x) changes, (due, say, to a variation in the axis of rotation

relative to the plane of motion), a displacement of a mean vortex element in latitude forces

a conversion of planetary vorticity (≈ 2~Ω) to local flow vorticity (≈ ~ω), in order to conserve

total PV. This produces a change in vorticity, while conserving total PV. This reasoning is

1
2



1

2
Density

Radius

1

2

(a) (b)

FIG. 3: Analogy of PV conservation in geostrophic waves and drift waves: (a) change in
local vorticity ~ω of a fluid element between θ1 and θ2 forces a flow generation, (b) density

variation along the ∇n line from position 1 to position 2 triggers a change in the flow (i.e.,
vorticity) so to conserve q.
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the underpinning of the β plane model, for which the potential vorticity:

q = ∇2
⊥φ+ βy

is conserved. That statement yields the familiar governing equation, which is:

∂t∇2
⊥φ+∇⊥φ× ẑ.∇⊥(∇2

⊥φ) = −βVy (37)

In the Hasegawa-Wakatani system, the conserved PV is: ln(n) − ∇2φ which may be

expanded to:

q = ln(n0(x)) +
ñ

n0

− ρ2s∇2
( |e|φ
Te

)
Since ñ/n0 = |e|φ̃/Te + h, it follows that:

q = ln(n0(x)) +
|e|φ̃
Te

+ h− ρ2s∇2
( |e|φ
Te

)
so that Γq, the PV flux, is equal to:

Γq = 〈ṽxh〉 − ρ2s
〈
ṽx∇2

⊥

( |e|φ̃
Te

)〉
(38)

Observe that the adiabatic part of the density perturbation makes no contribution to net PV

flux or mixing. In the HW system, the displacement of a mean density element (analogous to

the displacement of an element of planetary vorticity) induces a particle flux and a Reynolds

force (from the vorticity flux), which drives a zonal flow. The latter follows from Taylor

identity, assuming poloidal symmetry. Now in the adiabatic limit, density and vorticity

fluctuations are tightly coupled. Indeed, both particle and vorticity evolution scale with α.

Thus, it is not surprising that both particle flux and residual stress (i.e., the non-viscous

component of the Reynolds force) scale identically (∼ 1/α), and so zonal flows are robust. In

the adiabatic regime, the particle flux and the vorticity flux support the PV flux. However,

in the hydrodynamic regime, coupling of particle and PV fluctuations is weak (∼ O(α) with

α < 1), so the respective fluxes can decouple. The PV flux is supported primarily by the

particle flux Γn ∼ 1/
√
α, while the residual stress Πres ∼

√
α is insignificant, with α � 1.

Thus the non-diffusive Reynolds force drops with α, and so does flow production. Finally, the

23



zonal vorticity gradient, an indication of the flow production, is proportional to α, suggesting

that zonal flows and turbulence regulation are weak in the hydrodynamic regime. This is

consistent with the findings of several numerical simulations, which conclude that zonal

flows are robust for adiabatic electrons, but disappear in the hydrodynamic regime17–19. PV

mixing (resulting from convective cell instability) persists in the hydrodynamic regime, but

it is supported primarily by the particle flux, not vorticity transport.

VII. Relevance to Density Limit nG

The Greenwald density limit nG is an operational bound on the plasma density and

pressure. It represents the maximum attainable density before the plasma develops strong

disruptions and MHD activity8,9. Experiments in various toroidal devices6 including a recent

experiment in the HL-2A tokamak7, indicate a reduction of the edge shear flow layer and

a strong enhancement of turbulent particle transport as n̄ → nG. The shearing rate of

the mean E × B flow ωsh = ∇vθ drops, and the turbulent Reynolds power collapses in

those ohmic L-mode discharges approaching nG. In addition, both the core plasma density

and the edge turbulent particle flux 〈ṽxñ〉 increase with n̄. Meanwhile the cross-correlation

between the velocity and the density fluctuations grows substantially inside the separatrix.

The core plasma temperature Te on the other hand, decreases with n̄. Most importantly,

the adiabaticity parameter α drops from 3 to 0.5 as n̄ approaches nG
7. Note that in this

particular HL-2A experiment, the plasma β = 2µ0pe/B
2 was very low, in the range: 0.01 <

β < 0.02.

The aforementioned experimental findings can be interpreted according to the scalings

of Section VI. When the local edge plasma density increases, the adiabaticity parameter

α(∝ T 2
e /n̄) decreases below unity, thereby triggering a plasma transition from the adiabatic

to the hydrodynamic drift wave regime. According to the scalings of the previous section,

this transition is associated with an increase in the turbulent particle flux and turbulence.

Consistent with this, the mean vorticity gradient d∇v̄y/dx = Πres/χy drops. The production

of zonal flows thus declines, so turbulence is no longer regulated effectively. Particle transport

increases. For collisional drift waves, so does the electron thermal diffusivity, as particle and

heat losses are comparable for that system. This need not be the case of TEM, ITG and

other modes relevant to lower collisionality regimes. Cooling of the edge plasma is triggered.
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For constant pressure pe (i.e. time scales long compared to a sound transit time), this leads

to further increase in the density n̄. A feedback loop between n̄ and Te is thus formed when

α drops below unity. This scenario is summarized in the upper feedback loop in fig.(4).

We note that this scenario for the density limit does not necessarily require a MARFE or

a disruption. It hinges only upon a change in the turbulence self regulation and particle

transport for α decreases from α > 1 to α < 1. In addition, a path for the development

of MHD activity is suggested. We suggest that such development can be promoted by

turbulence spreading, which extends the region of degraded confinement inward from the

edge, beyond the zone of initial zonal flow collapse. We propose that when the turbulence

spreads inward, the temperature gradient will soften, causing the immediately adjacent ∇T

to steepen. The resistivity then increases, and the adjacent ∇J also steepens, possibly

triggering to MHD activity. Note however, that this is simply a ”scenario”. Further work is

needed in order to realize and validate it. And surely other scenarios, which link the increase

in particle transport as n̄/nG → 1 to MHD and disruptions, are possible.

This interpretation relies on the decrease of α below unity as the trigger for the drop in

zonal flow production. Such an interpretation does not require appeal to zonal flow damping

effects, associated with collisionality, charge exchange etc. Most importantly, in contrast to

ref.13, which postulates the surge in turbulence as due to yet another linear instability - such

as the resistive ballooning mode - the current approach explains how variations of α affect

the mean and turbulent plasma profiles within the context of generic drift wave theory. This

mechanism is applicable to plasmas at low β, like that of the HL-2A experiment7, where

resistive ballooning effects are not relevant.

VIII. Conclusion

This paper presents a theory of the collapse of a zonal shear layer in the hydrodynamic

electron limit. It elucidates the evolution of the plasma flow and turbulence, as the electron

response passes from the adiabatic to the hydrodynamic limit. In particular, the paper

describes the variation of the turbulent fluxes and mean profiles with the adiabaticity pa-

rameter α = k2zv
2
th/(νei|ω|). The key result of this paper is its explanation of why the zonal

shear layer weakens and disappears when the adiabaticity parameter drops below unity, and

so allows an enhanced level of turbulence. Moreover, the paper highlights the importance
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FIG. 4: Profile evolution in the hydrodynamic limit. The diagram shows a feedback loop
between the density and temperature via variations of α. A potential path for the

development of MHD modes involving turbulence spreading is also indicated. Inward
turbulence spreading and steepening of adjacent ∇T from a state 1© (in blue) to a state 2©

(in red) are shown on the left.

of the ZF collapse in the hydrodynamic limit (α < 1) as a key mechanism and a general

scenario for turbulence enhancement, even for plasmas with low β. We give a theoreti-

cal interpretation of the experimental and numerical results obtained in the hydrodynamic

plasma limit. Findings of this paper are applicable to low β density limit experiments, where

a weakening of the edge shear layer and a degradation of the thermal confinement result
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when the plasma density increases sufficiently so that α < 1.

The paper presents a 1D reduced model that self-consistently describes the spatiotemporal

evolution of the mean density n̄, the azimuthal flow v̄y, as well as the potential enstrophy

ε = 〈(ñ − ũ)2〉/2. The model is derived from the Hasegawa-Wakatani system for turbulent

drift waves, and exploits conservation of PV to constrain the relation between drift waves

and zonal flows. Key results of this paper are:

1. The particle flux Γn and the vorticity flux Π are calculated as: Γn = −D∇n̄ and

Π = −χy∇2v̄y+Πres. The vorticity flux is related to the Reynolds force via the Taylor

identity. Quasi-linear analysis shows that the scalings of Γn and Π with α change as

the plasma passes from the adiabatic to the hydrodynamic limit. These scalings are

summarized in table (I), and reveal the enhancement of the particle flux Γn and the

turbulent viscosity χy as α decreases. The residual stress Πres on the other hand drops

with α for α� 1 as Πres
hydro ∝

√
α.

2. Variations in the turbulent fluxes are responsible for the change in the mesoscopic flow

dynamics. When α drops, the mean vorticity gradient d(∇v̄y)/dx = Πres/χy - which

characterizes the zonal flow and the state of turbulence in the plasma - also drops. In

the adiabatic limit, the mean vorticity gradient is independent of α. However, in the

hydrodynamic limit, Πres/χy is proportional to α, indicating weakened production of

zonal flows for lower α. As the production of zonal flows decreases, the mechanism of

self-regulation fails, and the turbulence intensity rises.

3. The findings of this paper illuminate several aspects of the physics of the density limit.

When the plasma density increases, the adiabaticity parameter decreases (α ∝ T 2
e /n̄).

According to the scalings derived in Section VI, a decrease in the mean vorticity

gradient results when n̄ increases such that α � 1. In this case, the efficiency of the

zonal flow production drops. Thermal and particle losses due to collisional drift waves

thus increase, and the cross phase between the velocity and the density fluctuations

also increases7. Cooling of the plasma edge is then triggered, causing Te to drop

further. Feedback between n̄ and Te occurs.

4. Important results in this paper are the expressions for the fluxes Γ and Π. These

expressions can be used to model the gradual plasma transition from the adiabatic
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to the hydrodynamic limit. While previous work simply presented numerical observa-

tions of the enhancement of turbulence17,18, no previous works presented a continuous

transition from one limit to the other.

5. The paper gives a simple physical picture of why ZF production drops in the hydro-

dynamic electron regime. There the dispersion relation is ωhydror =
√
ω?α̂/(2k2⊥ρ

2
s), so

vgr = −krωrhydro/k2⊥. These are in contrast to the adiabatic case, for which ωadiar =

ω?(1+k2⊥ρ
2
s)
−1 and vgr = −2ρ2skrkθvd/(1+k2⊥ρ

2
s)

2. Thus, in the hydrodynamic regime,

the condition of outgoing waves (vgr > 0) does not constrain the Reynolds stress

〈ṽxṽy〉 ' 〈krkθ〉, thus breaking the direct proportionality between wave propagation

and Reynolds stress. This link is fundamental to ZF production by DWs.

6. The paper explains why turbulence is enhanced in the hydrodynamic limit, and as-

certains the physics of the Reynolds stress in regulating the drift wave - zonal flow

relation. We show that PV mixing in the hydrodynamic electron limit is supported by

the particle flux, i.e., 〈ṽxq̃〉 = 〈ṽxh〉 − 〈ṽx∇2φ̃〉 ' 〈ṽxh〉. The vorticity flux drops and

the particle flux rises with α in this regime. This explains why zonal flow formation

is weak in the hydrodynamic regime.

At this point, it is necessary to add a brief answer to the inevitable questions: ”What

of the H-mode? Why doesn’t the system transit to the H-mode when zonal flows are

produced?”. The answer to the latter is simple - the shear flows are not strong enough,

for L-modes levels of edge heat flux. As the heat flux increases to the critical value for

transition, the zonal shears become strong enough to induce a strong reduction in turbulence

or turbulence collapse30,31, thus allowing ∇pi to steepen and produce a mean E × B shear

which ”locks in” the H-mode trasnport barrier. The answer to the former is that the

considerations of this paper (and numerous related works) suggest that the states of edge

turbulence and particle transport and profiles may be classified as:

i) a ”normal”, L-mode state where turbulence generated secondary modes (i.e. ZFs and

GAMs) regulate turbulence and transport, but do not suppress them.

ii) an H-mode state where the mean E ×B shear, largely set by ∇〈pi〉, is strong enough

to suppress turbulence and turbulent transport. In H-mode, secondary modes are of little

relevance, since primary mode levels are weak.

28



iii) a state of degraded particle confinement, associated with the density limit. This state

evolves from L-mode, and is accessed by reduction in secondary zonal flow production when

α < 1. In this state, turbulence and particle transport are large. Experiments suggest

this state of degraded particle confinement can be accessed from H-mode only following

an H → L back transition9. Table (II) summarizes this discussion. Finally, we note in

passing that this classification of states does not include the Improved mode (I-mode)32.

This is because the understanding of I-mode physics is still developing. We note that the

”improvement” in I-mode is in thermal confinement, but not particle confinement. Thus,

for the purpose of this discussion centered on particle transport, the I-mode can be lumped

into the L-mode category.

State Electrons Turbulence Regulation

Base State - L-mode Adiabatic or Collisionless Secondary modes

α > 1 (ZFs and GAMs)

H-mode Irrelevant Mean E ×B shear

(∇pi)

Degraded particle confinement Hydrodynamic None - ZF collapse due

(Density Limit) α < 1 weak production for α < 1

TABLE II: Secondary modes and states of particle confinement.

Future work includes numerical investigation of the evolution of a plasma transition from

one limit to the other. Moreover, it would be instructive to investigate experimentally the

causality relation between the drop in α and the drop in ZF production. In particular, it

is useful to determine which occurs first. This would probe the predictions of the theory.

One suggestion would be to verify the decrease of the calculated total Reynolds work, as

n̄/nG is raised. When the total Reynolds work decreases, energy transfer to the mean flow

structures drops, so the fluctuations should grow. Another possible experiment consists of

increasing the plasma density n̄ and temperature Te, such that the adiabaticity parameter

α ∝ T 2
e /n̄ remains constant (assuming the variations of the Coulomb logarithm are negligi-
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ble). According to the theory presented above, no collapse of the zonal shear layer should

be observed, simply because α does not change. One can also investigate the contribution of

collisional damping effects by comparing the response with and without the damping factor.

This is particularly useful to confirm the pivotal role of the Reynolds stress in the collapse of

the zonal shear layer at the density limit. Additional work also should include investigation

of the role of high edge ∇p and high β values in H-modes on the enhancement of turbulence

and profile evolution in density limit experiments.
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