Basics of Turbulence II:

Some Aspect of Mixing and Scale Selection

P.H. Diamond

UC San Diego and SWIP 1st Chengdu Theory Festival Aug. 2018

This research was supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-04ER54738 and CMTFO.

Outline

- Prelude: Thoughts on Mixing and Scale Selection
- Mixing in Pipes and Donuts:
 - Prandtl
 Kadomtsev
 Simple, useful ideas
- Potential Vorticity: Not all mixing is bad...
- Inhomogeneous Mixing: Corrugations and Beyond
- Brief Discussion

Prelude

- Why is plasma turbulence "hard"?
 - 40+ years
 - Modest 'Re'
- 1) Broad dynamic range: $\rho_e \rightarrow \rho_i < l < L_p$ (mesoscopic structures galore)
- 2) Multi-scale bifurcations, bi-stability
- 3) Ku ~ 1 ($\tilde{V}\tau_c/\Delta \equiv Ku$) (coherent vs stochastic)
- 4) Boundary dynamics/dynamic boundaries
- 5) Dynamic <u>phases</u>

Bosch as Metaphor (After Kadomtsev)

"The Garden of Earthly Delights", Hieronymous Bosch

- Most Problems: Scale Selection
- Classic example:
 - Mixing Length Estimate / "Rule" (Kadomtsev '66)
 - Still used for modelling

$$\frac{\partial \tilde{P} + \tilde{V} \cdot \nabla \tilde{P} = -\tilde{V}_r \, d\langle P \rangle / dr}{\uparrow}$$

$$\frac{\delta P}{P} \sim \frac{\Delta}{L_p}$$

N.B.
$$\frac{\delta P}{P} \sim \frac{\Delta}{L_p} \Leftrightarrow Ku \sim O(1)$$

• What is Δ ?

 $-\rho_i$

- linear mode scale, which?
- shearing modified scale
- domain scale
- ... what?

A Simpler Problem:

→ Drag in Turbulent Pipe Flow

- L. Prandtl 1932, et. seq
- Prototype for mixing length model

- Essence of confinement problem:
 - given device, sources; what profile is achieved?
 - $\tau_E = W/P_{in}$, How optimize W, stored energy
- Related problem: Pipe flow → drag ↔ momentum flux

• Prandtl Mixing Length Theory (1932)

- Wall stress = $\rho V_*^2 = -\rho v_T \frac{\partial u}{\partial x}$ or: $\frac{\partial u}{\partial x} \sim \frac{V_*}{x} \leftarrow \frac{\text{Spatial counterpart}}{\text{of K41}}$ eddy viscosity Scale of velocity gradient?

- Absence of characteristic scale \rightarrow

turbulent $\rightarrow v_T \sim V_* x$ transport $u \sim V_* \ln(x/x_0)$ $x \equiv \underline{\text{mixing length}}$, distance from wall Analogy with kinetic theory ...

$$v_T = v \rightarrow x_0$$
, viscous layer $\rightarrow x_0 = v/V_*$

Some key elements:

- Momentum flux driven process $\Delta P \leftrightarrow V_*^2 \rightarrow v_T \partial u / \partial x$
- Turbulent diffusion model of transport eddy viscosity
- Mixing length scale selection
 - ~ $x \rightarrow$ macroscopic, eddys span system $x_0 < x < a$

 \rightarrow ~ flat profile – strong mixing

 $v_T = V_* x$

- Self-similarity $\rightarrow x \leftrightarrow$ no scale, within $[x_0, a]$
- Reduce drag by creation of buffer layer i.e. steeper gradient than inertial sublayer (by polymer) – enhanced confinement

Without vs With Polymers Comparison \rightarrow NYFD 1969

Confinement

Primer on Turbulence in Tokamaks I

- Strongly magnetized
 - Quasi 2D cells, Low Rossby #
 - * Localized by $\vec{k} \cdot \vec{B} = 0$ (resonance) pinning
- $\vec{V}_{\perp} = + \frac{c}{B} \vec{E} \times \hat{z}$, $\frac{V_{\perp}}{l\Omega_{ci}} \sim R_0 \ll 1$
- ∇T_e , ∇T_i , ∇n driven
- Akin to thermal convection with: $g \rightarrow$ magnetic curvature
- → Re $\approx VL/v$ ill defined, not representative of dynamics
 - Resembles wave turbulence, not high Re Navier-Stokes turbulence
- $\bullet \quad K \sim \tilde{V}\tau_c/\Delta \sim 1 \ \bullet \ \ Kubo \ \# \approx 1$
- \rightarrow Broad dynamic range, due electron and ion scales, i.e. a, ρ_i, ρ_e

Primer on Turbulence in Tokamaks II

- Correlation scale ~ few $\rho_i \rightarrow$ "mixing length"(?!)
- Characteristic velocity $v_d \sim \rho_* c_s$
- Transport scaling: $D_{GB} \sim \rho V_d \sim \rho_* D_B$

 $D_B \sim \rho \; c_s \sim T/B$

- i.e. Bigger is better! → sets profile scale via heat balance (Why ITER is huge...)
- Reality: $D \sim \rho_*^{\alpha} D_B$, $\alpha < 1 \rightarrow$ 'Gyro-Bohm breaking'
- 2 Scales, $\rho_* \ll 1 \Rightarrow \underline{\text{key contrast to pipe flow}}$

THE Question Scale Selection

- Pessimistic Expectation (from pipe flow):
 - $l \sim a$
 - $D \sim D_B$
- Hope (mode scales)
 - $\ l \sim \rho_i$
 - $D \sim D_{GB} \sim \rho_* D_B$
- Reality: $D \sim \rho_*^{\alpha} D_B$, $\alpha < 1$

Why? What physics competition set *α*?→ Focus of a large part of this Festival

Correlation function (DBS) exhibits multiple scale behavior (Hennequin, et. al. 2015)

Players in Scale Selection

- Mesoscales: $\Delta_c < l < L_p$
- Transport Events: <u>Enhanced Mixing</u>
 - Turbulence spreading
 - Avalanching

- c.f. Hahm, Diamond 2018 (OV), Dif-Pradalier, this meeting
- Zonal shears regulation

c.f. Kosuga this meeting

➔ Produced by PV mixing

Potential Vorticity and Zonal Flows → Not all mixing is bad... → A different take on a familiar theme

Basic Aspects of PV Dynamics

Geophysical fluids

- Phenomena: weather, waves, large scale atmospheric and oceanic circulations, water circulation, jets...
- Geophysical fluid dynamics (GFD): low frequency ($\omega < \Omega$)

"We might say that the atmosphere is a musical instrument on which one can play many tunes. High notes are sound waves, low notes are long inertial waves, and nature is a musician more of the Beethoven than the Chopin type. He much prefers the low notes and only occasionally plays ("Turing's arpeggios in the treble and then only with a light hand." – J.G. Charney Cathedral")

• Geostrophic motion: balance between the Coriolis force and pressure gradient

Kelvin's theorem – unifying principle

PV conservation
$$\frac{dq}{dt} = 0$$

(branching)

Charney-Hasewgawa-Mima equation

$$n = n_0 + \tilde{n}$$

$$\tilde{n} \sim \frac{e\tilde{\phi}}{T}$$
H-W \rightarrow H-M:

$$\frac{1}{\omega_{ci}} \frac{\partial}{\partial t} \left(\nabla^2 \phi - \rho_s^{-2} \phi \right) - \frac{1}{L_n} \frac{\partial}{\partial y} \phi + \frac{\rho_s}{L_n} J(\phi, \nabla^2 \phi) = 0$$

Q-G:

$$\frac{\partial}{\partial t} \left(\nabla^2 \psi - L_d^{-2} \psi \right) + \beta \frac{\partial}{\partial x} \psi + J(\psi, \nabla^2 \psi) = 0$$

PV Transport

- Zonal flows are generated by nonlinear interactions/mixing and transport.
- In x space, zonal flows are driven by Reynolds stress Taylor's Identity $\langle \tilde{v}_y \tilde{q} \rangle = -\frac{\partial}{\partial v} \langle \tilde{v}_x \tilde{v}_y \rangle \rightarrow PV$ flux fundamental to zonal flow formation
- Inhomogeneous PV mixing, not momentum mixing (dq/dt=0)
 → up-gradient momentum transport (negative-viscosity) not an enigma
- Reynolds stresses intimately linked to wave propagation

$$\langle \tilde{v}_x \tilde{v}_y \rangle \rightarrow \sum_{\underline{k}} k_x k_y |\hat{\phi}_k|^2$$

Sout: $\sum_{\underline{k}} k_x k_y |\hat{\phi}_k|^2$
 $\int_{\underline{k}} Wave-mixing, transport duality$

$$v_{gy} = \frac{2k_x k_y \beta}{(k^2)^2}$$
, $S_y = v_{gy} \varepsilon$

c.f. Review: O.D. Gurcan, P.D.; J. Phys. A (2015) real space emphasis

How make a ZF? \rightarrow Inhomogeneous PV mixing

• PV mixing is the fundamental mechanism for zonal flow formation

- → PV Mixing ⇔ Wave Propagation
- → How do Zonal Flow Form?

Simple Example: Zonally Averaged Mid-Latitude Circulation

 classic GFD example: Rossby waves + Zonal flow (c.f. Vallis '07, Held '01)

Key Physics:

- … "the central result that a rapidly rotating flow, when stirred in a localized region, will converge angular momentum into this region." (I. Held, '01)
- ► Outgoing waves ⇒ incoming wave momentum flux

- Local Flow Direction (northern hemisphere):
 - eastward in source region
 - westward in sink region
 - ▶ set by β > 0
 - Some similarity to spinodal decomposition phenomena → Both 'negative diffusion' phenomena

Minimum Enstrophy Relaxation

→ Principle for ~ 2D Relaxation?
 → How Represent PV mixing?
 Non-perturbative?

Foundation: Dual Cascade

Upshot : Minimum Enstrophy State

(Bretherton and Haidvogel, 1976)

-- idea : final state

- potential enstrophy forward cascades to viscous dissipation
- -- kinetic energy inverse cascades (drag?!)
- -- calculate macrostate by minimizing potential enstrophy Ω subject to conservation of kinetic energy E, i.e. $\delta(\Omega + \mu E) = 0$ [n.b. can include

topography]

 \rightarrow "Minimum Enstrophy Theory"

A Natural Question:

How exploit relaxation theory in dynamics? (with P.-C. Hsu, S.M. Tobias)

Further Non-perturbative Approach for Flow!

Using selective decay for flux

dual cascade		minimum enstrophy relaxation (Bretherton & Haidvogel 1976)	nalogy (J.B. Taylor, 1974)
	turbulence	2D hydro	3D MHD
	conserved quantity (constraint)	total kinetic energy	global magnetic helicity
	dissipated quantity (minimized)	fluctuation potential enstrophy	magnetic energy
	final state	minimum enstrophy state	Taylor state
		flow structure emergent	force free B field configuration
	structural approach	$\frac{\partial}{\partial t} \Omega < 0 \Longrightarrow \Gamma_E \Longrightarrow \Gamma_q$	$\frac{\partial}{\partial t} E_{M} < 0 \Longrightarrow \Gamma_{H}$ (Boozer, '86)

• flux? what can be said about dynamics?

→ structural approach (this work): What form must the PV flux have so as to dissipate enstrophy while conserving energy?

General principle based on general physical ideas \rightarrow useful for dynamical model ₃₁

<u>PV flux</u>

Structure of PV flux

$$\Gamma_{q} = \frac{1}{\langle \boldsymbol{v}_{x} \rangle} \partial_{\boldsymbol{y}} \left[\mu \partial_{\boldsymbol{y}} \left(\frac{\partial_{\boldsymbol{y}} \langle \boldsymbol{q} \rangle}{\langle \boldsymbol{v}_{x} \rangle} \right) \right] = \frac{1}{\langle \boldsymbol{v}_{x} \rangle} \partial_{\boldsymbol{y}} \left[\mu \left(\frac{\langle \boldsymbol{q} \rangle \partial_{\boldsymbol{y}} \langle \boldsymbol{q} \rangle}{\langle \boldsymbol{v}_{x} \rangle^{2}} + \frac{\partial_{\boldsymbol{y}}^{2} \langle \boldsymbol{q} \rangle}{\langle \boldsymbol{v}_{x} \rangle} \right) \right]$$

transport parameter calculated by perturbation theory, numerics...

drift and hyper diffusion of PV

<--> usual story : Fick's diffusion

relaxed state: Homogenization of $\frac{\partial_y \langle q \rangle}{\langle v_x \rangle}$

characteristic scale ℓ_c

$$\equiv \sqrt{\left|\frac{\left<\boldsymbol{\upsilon}_{\boldsymbol{x}}\right>}{\boldsymbol{\partial}_{\boldsymbol{y}}\left<\boldsymbol{q}\right>}\right|}$$

- $\ell > \ell_c$: zonal flow growth
- $\ell < \ell_c$: zonal flow damping (hyper viscosity-dominated)

Rhines scale $L_R \sim \sqrt{\frac{U}{\beta}}$ $\ell > L_R$: wave-dominated $\ell < L_R$: eddy-dominated

What sets the "minimum enstrophy"

• Decay drives relaxation. The relaxation rate can be derived by linear perturbation theory about the minimum enstrophy state

• The condition of relaxation (modes are damped):

$$\gamma_{rel} > 0 \implies k^2 > \frac{8q_m^2}{\langle v_x \rangle^2} - 3\lambda \implies \frac{8q_m^2}{\langle v_x \rangle^2} > 3\lambda \implies \forall \text{Relates } q_m^2 \text{ with ZF and scale factor}$$
$$\implies \langle v_x \rangle^2 < \frac{3\lambda}{8q_m^2} \qquad \text{ZF can't grow arbitrarily large}$$
$$\implies 8 q_m^2 > \langle v_x \rangle^2 3\lambda \qquad \text{the 'minimum enstrophy' of relaxation} \text{ related to scale}$$

Role of turbulence spreading

- Turbulence spreading: tendency of turbulence to self-scatter and entrain stable regime
- Turbulence spreading is closely related to PV mixing because the transport/mixing of turbulence intensity has influence on Reynolds stresses and so on flow dynamics.
- PV mixing is closely related to turbulence spreading

$$\frac{\partial E}{\partial t} = \int \langle \phi \rangle \partial_{y} \Gamma_{q} = -\int \partial_{y} \langle \phi \rangle \Gamma_{q} \qquad \Rightarrow \Gamma_{q} = \frac{\partial_{y} \Gamma_{E}}{\partial_{y} \langle \phi \rangle}$$

condition of energy conservation

 \rightarrow the gradient of $\partial_{v} \langle q \rangle / \langle v_{x} \rangle$, drives spreading

 \rightarrow the spreading flux vanishes when $\partial_{v}\langle q \rangle / \langle v_{x} \rangle$ is homogenized

Inhomogeneous Mixing

→ Formation of corrugations, layering, etc
 → Focus: Stratified Fluid

See also: Dif-Pradalier Lecture Weixin Guo Robin Heinonen

Inhomogeneous Mixing

Example: Thermohaline Layer Simulation (Radko, 2003)

Sharp interface formed colors \rightarrow salt concentration

Modulation \rightarrow Corrugations \rightarrow Mergers \rightarrow "Barrier"

Corrugations formed, followed by 'condensation' to single layer \rightarrow Merger events 37

(a) \overline{z} (d)(e) Ζ $\overline{\rho}_{total}$ $\overline{\rho}_{total}$ $\overline{\rho}_{total}$

Single layer

Corrugated Profile

- Inhomogeneous Mixing → Corrugations? How? → Bistable Modulations
- Cf Phillips'72:

SHORTER CONTRIBUTION

Turbulence in a strongly stratified fluid --- is it unstable?

O. M. PHILLIPS*

(Received 30 July 1971; in revised form 6 October 1971; accepted 6 October 1971)

Abstract—It is shown that if the buoyancy flux is a local property of turbulence in a stratified fluid that decreases sufficiently rapidly as the local Richardson number increases, then an initially linear density profile in a turbulent flow far from boundaries may become unstable with respect to small variations in the vertical density gradient. An initially linear profile will then become ragged; this possible instability may be associated on occasions with the formation of density microstructure in the ocean.

• Instability of mean + turbulence field requiring:

 $\delta \Gamma_b / \delta Ri < 0 \rightarrow$ flux dropping with increased gradient

 $\Gamma_b = -D_b \nabla b$, $Ri = g \nabla b / v'^2$ (Richardson #)

• Obvious similarity to transport bifurcation, but now a sequence of layers...

Corrugated Layering

Kimura, et. al.

Kimura, et. al.

Corrugated (total) temperature profile PDFs of T, ∇T . θ_z is skewed.

- Is there a "simple model" encapsulating these ideas
- N. Balmforth, et al 1998 → corrugated profile in stirred, stable stratified turbulence (c.f. A. Ashourvan, P.D.; '17, '18 for drift waves)
- Idea
 - bistable modulation
 - kinetic energy, mean density evolution

$$- D \sim \tilde{V} l_{mix} \sim (\varepsilon)^{1/2} l_{mix}$$

 $\rightarrow - l_{mix} \rightarrow \underline{\text{key}}$

- What is the Mixing Length (l_{mix}) ?
- Stratified fluid: buoyance frequency ($\sim (g/L_{\rho})^{1/2}$)

•
$$\frac{V(l)}{l} \sim N \rightarrow l_{oz}$$
 Ozmidov scale $Ku(l_{oz}) \rightarrow 1$

~ small "stratified" scale

buoyancy production

$$\sim \frac{V^3}{l} \sim g \langle V \delta b \rangle \rightarrow \frac{1}{l_{oz}} \sim \left(\frac{\partial_z b}{\varepsilon}\right)^{1/2}$$
turbulent dissipation

$$\frac{1}{l_{mix}^2} \sim \frac{1}{l_f^2} \sim \frac{1}{l_{oz}^2}$$
system \rightarrow
2 scales, intrinsically

• So:

$$l_{mix}^{2} = \frac{l_{f}^{2} l_{oz}^{2}}{l_{oz}^{2} + l_{f}^{2}}$$

$$\rightarrow l_{oz}^{2} \qquad l_{oz}^{2} \ll l_{f}^{2}$$

$$\sim (\varepsilon/\partial_{z}b)^{1/2} \qquad \text{steep } \partial_{z}b$$

→ Feedback loop emerges, as l_{mix} drops with steepening $\partial_z b$

 \rightarrow some resemblance to flux limited transport models

$$D = \varepsilon^{1/2} l_{mix}$$

$$\varepsilon = \langle \tilde{V}^2 \rangle$$
Model
$$\frac{1}{l_{mix}^2} = \frac{1}{l_f^2} + \frac{1}{l_{oz}^2}$$
spreading production
$$\partial_t \varepsilon = \partial_z D \partial_z \varepsilon - l \varepsilon^{\frac{1}{2}} \partial_z b - \frac{\varepsilon^{\frac{3}{2}}}{l} + F \leftarrow \text{external forcing}$$
Energetics:
dissipation

 $\partial_t \int [\varepsilon - zb] = 0 + \text{source, sink}$

- <u>Some observations</u>
 - No molecular diffusion branch ("neoclassical H-mode")
 Steep $\partial_z b$ balanced by dissipation, as l reduced
 - Step layer set by turbulence spreading (N.B. interesting lesson for case when D_{neo} feeble i.e. particles)
 - Forcing acts to initiate fluctuations, but production by gradient (~ $\partial_z b$) is the main driver
 - Gradient-fluctuation energy balance is crucial
 - Can explore stability of initial uniform $e, \partial_z b$ field \rightarrow akin modulation problem

• The physics: Negative Diffusion

"H-mode" like branch (i.e. residual collisional diffusion) need not be input

- often feeble residual diffusion
- gradient regulated by spreading
- Instability driven by local transport bifurcation
- $\delta \Gamma_b / \delta \nabla b < 0$
 - → 'negative diffusion'

Negative slope Unstable branch

• Feedback loop $\Gamma_b \downarrow \rightarrow \nabla b \uparrow \rightarrow I \downarrow \rightarrow \Gamma_b \downarrow$

Critical element: $l \rightarrow \text{mixing length}$

Brings a new wrinkle: bi-stable mixing length models

• <u>Some Results</u>

Plot of $\partial_z b$ (solid) and ε (dotted) at early time. Buoyancy flux is dashed \rightarrow near constant in core (not flux driven)

Later time → more like expected "corrugation". Some <u>condensation</u> into larger scale structures has occurred. <u>Time Evolution</u>

$\partial_z b \; (\times \; 10^4)$

- Time progression shows merger
 process akin bubble
 competition for steps
- Suggests trend to merger into fewer, larger steps
- Relaxation description in terms of merger process!? i.e. population evolution
- Predict/control position of final large step?

Inhomogeneous Mixing - Summary

- Highly relevant to MFE confinement
- Theory already extended to simple drift wave systems
- Bistable inhomogeneous mixing significantly extend concept of "modulational instability"
- Natural synthesis of:
 - modulational instability
 - transport bifurcation
- Defines a new, mesoscopic state

Discussion

- "Choppy Profiles" TFTR?
- L-mode hysteresis in Q vs \tilde{I} , Q vs ∇T ?
- Will turbulence spreading saturate ZF for $\nu \rightarrow 0$?
- Statistical distribution of l_{mix} ?

Shameless Advertising:

"Mesoscopic Transport Events and the Breakdown

of Fick's Law for Turbulent Fluxes"

T.S. Hahm, P.H. Diamond

- in press, J. Kor. Phys. Soc., 50th Ann. Special Issue
- preprint available

 This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Science, under Award Number DE-FG02-04ER54738