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Intrinsic parallel flow driven by residual stress

• Intrinsic flow (toroidal rotation) improves stability and confinement in magnetized 
plasmas

• Intrinsic flow can arise from a non-diffusive, residual stress

• Momentum diffusion and pinch cannot serve as a momentum source
• 𝛻 ⋅ Π$%&'( constitutes intrinsic force driving parallel flow

• Π$%&'( depends on turbulence, so Π$%&'( ∝ free energy source
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Evidence for residual stress driven flow: Macroscopic

Δ"# (km/s)

∇% (keV/m)

‘Cancellation’ experiments in 
DIII-D show substantial 
intrinsic torque at edge

[Solomon, NF 2009]

In C-Mod, Δ𝑉% ∝ 𝛻𝑇- in H-
and I-mode plasmas 
[Rice, PRL 2011]

Heat engine model:
Heating ⇒ 𝛻𝑇 ⇒ Π$%&'( ⇒ 𝑉%6 	

[Kosuga, PoP 2010]

Turbulence



• Finite Π$%&'( requires symmetry breaking 𝑘9𝑘% ≠ 0

• 𝑘9𝑘% ≠ 0 can be induced by 𝐸$6

• TJ-II: parallel turbulent force, −𝛻$ 𝑣?$𝑣?% , increases w/ 
density [Goncalves PRL 06]

• TEXTOR: significant Π$%&'(; 𝐸$6 threshold for triggering 
Π$%&'( [Xu, NF 13]

• GK simulations predicts dipolar structure of Π$%&'(

consistent w/ measured rotation profile in DIII-D

Evidence for residual stress: Micro-turbulence

[Gurcan, PoP 07]

[Wang, PoP 17]

Macro 𝑉%6 Micro Π$%&'( 𝑘9𝑘% ≠ 0? ?



Tracing the Micro ➞ Macro connection

• Trace the pathway from symmetry breaking to development of residual stress 
and thus onset of sheared parallel mean flow

• Fundamental issues of intrinsic flow study in linear plasma devices
• Does turbulence drive parallel flow in a linear plasma device?
• Connection between free energy source and turbulent drive?
• Is there direct evidence linking symmetry breaking to finite residual stress? 
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Experimental Setup—CSDX

• Straight, uniform magnetic field in axial direction
• Argon plasma produced by RF helicon source, Prf=1.8 kW with 2 mtorr
• Insulating endplate avoid strong sheath current
• Diagnostics: Combined Mach and Langmuir probe array

Heating

Sink



CSDX: Promising testbed for drift-wave physics

Parameters Tokamak Boundary CSDX

𝜌∗ = 𝜌( 𝐿D⁄ ∼ 0.1 ∼ 0.3

𝑘∥K𝑣L'K 𝜔𝜈'⁄ ∼ 0.5 − 5 1 − 3

𝜆'- 𝐿QRDD⁄ ≲ 1 ∼ 0.1 − 0.3

𝑙QR$/𝜌( ≲ 1 ∼ 1

• Some dimensionless parameters show similarity between linear device and 
Tokamak SOL region

• CSDX can serve as a testbed for studying drift-wave-driven residual stress 
and intrinsic axial flow
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Axial flow shear scales w/ 𝛻𝑛—free energy source

• Obtain different profiles by varying B field 
strength

• Steepened density gradient with higher B
• Vz shear increases with increasing 𝛻𝑛 as B is 

raised
• 𝐿DWX ≫ 𝐿Z[

WX ⇒ 𝛻𝑛 is primary free energy source

• Question: Connection between 𝛻𝑛 and 𝑉\6? 
(Rice scaling)



Axial flow shear tracks 𝛻𝑛—free energy source 

• Existence of 𝛻𝑛 threshold at ∼ 1.6×10K_ m-4

• 𝑉\6 increases sharply with 𝛻𝑛 after the threshold
• Reproduce a Rice-like scaling—Intrinsic flow ∝ free energy source
• Question: Connection to turbulence?

Δ𝑉% (km/s)

𝛻𝑇 (keV/m)

CSDX C-Mod



Axial flow is driven by turbulent force

• 𝑉\ shear increases and reverses at edge
• 𝑣?$𝑣?\ shows strong inward momentum flux at higher B and 𝛻𝑛
• Reynolds force 𝐹\&' = −𝛻$⟨𝑣?$𝑣?\⟩ increases and reverses Vz at edge
• −𝛻$⟨𝑣?$𝑣?\⟩ is about ×5 larger than force due to axial pressure drop

Axial
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Reynolds force + Collisional damping ⇒ 𝑉\ profile

• Ion momentum equation used to calculate 𝑉\ profile w/ no-slip b.c.
• Calculated 𝑉\ profiles agree with measured ones
• 𝜈-D = 𝑛cd(𝑣L-𝜎-D ∼ 3 − 6×10f s-1 and 𝜇-- = h

i	𝜌-
K𝜈-- ∼ 3 − 5 m2/s

• Coefficients may have small spatial variations: 𝜈-D ∝ 𝑇-
WX/K and 𝜇-- ∝ 𝑛𝑇-

WX/K
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(rhṽz ṽri) ⇤ � 1
mi hni

@Pe

@z
� ⌫inVz +

1
r
@
@r

✓
µii r
@Vz

@r

◆



Outline

• Motivation: Connect Macroscopic Intrinsic Flow to Microscopic Mechanism

• Experimental Setup in a Linear Device—CSDX

• Axial Flow Driven by Turbulent Stress

• Density Gradient ⟹ Residual Stress

• Residual Stress ⟺ Spectral Symmetry Breaking

• Dynamical Symmetry Breaking Model

• Conclusion

Macro-Flow

Residual Stress

Symmetry Breaking



Axial Reynolds power tracks 𝛻𝑛

• Reynolds power 𝑃\&' = −𝑉\𝛻$ 𝑣?$𝑣?\ measures 
nonlinear energy transfer into shear flow

• When 𝑃\&' is negligible, 𝑉\6 is driven by axial 
pressure drop

• 𝑃\&' tracks 𝛻𝑛 after threshold exceeded
• Axial flow shear 𝑉\6 also increases with 𝛻𝑛

Free energy ⇒ Turbulence ⇒ Intrinsic flow

𝛻𝑛 ⇒ 𝑃\&' ⇒ 𝑉\6



Synthesize residual stress

• Reynolds stress is written as
𝑣?$𝑣?\ = −𝜒\𝑉\6 + 𝑉m𝑉\ + Π$\&'(

• Pinch (𝑉m𝑉\) arises from toroidal effects, irrelevant in 
linear machine

• Synthesize residual stress 
Π$\&'( = 𝑣?$𝑣?\ + 𝑣?$K 	𝜏Q	𝑉\6

• Larger residual stress at higher B field
• Question: Link Π$\&'( to 𝛻𝑛?
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Link residual stress to 𝛻𝑛: A simple model

• Parallel velocity fluctuation written as

• With adiabatic electrons, '%
o

Z
∼ D?

Dp
and q

r
qp
∼ D?

Dp
, one obtains

• Using mixing length theory, 𝑛? ∼ 𝑙Q|𝛻$𝑛_|, where 𝑙Q ∼ 𝑣?$𝜏Q

• Reynolds stress becomes
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Residual Stress Diffusive term

𝜎tZ quantifies degree of 
symmetry breaking

𝑙Q ∼ 𝜌( in CSDX



Residual stress scales with 𝛻𝑛

• Use synthesized residual stress 
Π$\&'( = 𝑣?$𝑣?\ + 𝑣?$K 	𝜏Q	𝑉\6

• At lower 𝛻𝑛, Π$\&'( independent of 𝛻𝑛 (i.e. 
𝜎tZ → 0)

• At higher 𝛻𝑛, Π$\&'( increases with 𝛻𝑛

• Least-square fit gives 𝜎tZ ∼ 0.1 at larger 𝛻𝑛

• Π$\&'( is determined by density gradient

𝑛 Π$\&'(

𝑙QK𝑐(K

𝐿\
𝛻𝑛
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Increasing 𝛻𝑛

Demonstrate spectral asymmetry

• Joint PDF 𝑃(𝑣?$, 𝑣?\) empirically represents spectral correlator 𝑘9𝑘\
• 𝑣?$ ∼ 𝑘9𝜙r and 𝑣?\ ∼ 𝑘\𝑃r ∼ 𝑘\𝜙r for adiabatic plasma

• 𝑃(𝑣?$, 𝑣?\) is isotropic at lower 𝛻𝑛; anisotropic and elongated at higher 𝛻𝑛
• Evidence for symmetry breaking 𝑘9𝑘\ ≠ 0 which implies a finite residual stress
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Towards a theory of symmetry breaking

• General theory of intrinsic flow: analogy to heat engine [Kosuga PoP 10]

• Heating ⇒ 𝛻𝑇 ⇒ Π$\&'( ⇒ 𝑉\6	

• Finite Π$\&'( needs symmetry breaking 𝑘9𝑘\ ≠ 0

• In tokamaks, symmetry breaking relies on magnetic shear
• 𝑘\ ∼

{|}
~�
	⇒ 	 𝑘9𝑘\ → 𝑘9K 𝑥 /𝐿(

• In CSDX, uniform axial B field and no magnetic shear 
• Dynamical symmetry breaking model [Li et al, PoP 16]

• No requirement for magnetic shear
• Analogy to zonal flow generation via modulational instability
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Dynamical symmetry breaking
• DW growth rate and frequency shift: • Spectral imbalance:

modes in shaded domains grow faster

Infinitesimal test 
axial flow shear, e.g. 

𝛿 𝑣\ 6 < 0

Modes with 𝑘9𝑘\ < 0
grow faster than other 

modes, 
𝛾{|{|{��_ > 𝛾{|{|{��_

Spectral imbalance in 
𝑘9𝑘\ space

𝑘9𝑘\ < 0à Π$\&'( ≠ 0

[Li et al, PoP 16]
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Conclusion: Macro-Micro connection

• Axial flow is driven by turbulent stress
• Both axial flow shear and Reynolds power tracks 𝛻𝑛
• Residual stress Π$\&'( scales with 𝛻𝑛
• Demonstrate direct link between symmetry breaking and residual stress
• Finite Π$\&'( at zero magnetic shear emerges from dynamical symmetry breaking

Dynamical Symmetry Breaking

Macro Macro
Micro
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Thank You



Probe configuration



LIF vs Mach probe measurement



Ion temperature profile



Residual stress profiles


