

Tracing the Pathway from Drift-Wave Turbulence with Broken Symmetry to the Onset of Sheared Axial Flow

R. Hong,¹ J. C. Li,² S. Chakraborty Thakur,¹ R. Hajjar,¹ P. H. Diamond,^{2,3} and G. R. Tynan^{1,3}

¹Center for Energy Research, University of California, San Diego, USA

²Center for Astrophysics and Space Sciences, University of California, San Diego, USA

³Center for Fusion Science, Southwest Institute of Physics, Chengdu, China

APS-DPP 2017, Milwaukee, WI

Work partially supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Numbers DE-FG02-04ER54738

Outline

- Motivation: Connect Formation of Intrinsic Flow to Microscopic Mechanism
- Experimental Setup in a Linear Device—CSDX
- Axial Flow Driven by Turbulent Stress
- Density Gradient \Rightarrow Residual Stress
- Residual Stress ⇔ Spectral Symmetry Breaking
- Dynamical Symmetry Breaking Model
- Conclusion

Intrinsic parallel flow driven by residual stress

- Intrinsic flow (toroidal rotation) improves stability and confinement in magnetized plasmas
- Intrinsic flow can arise from a non-diffusive, residual stress

$$\left\langle \tilde{v}_{\phi}\tilde{v}_{r}\right\rangle = -\chi_{\phi}\partial_{r}V_{\phi} + V_{p}V_{\phi} + \Pi_{r\phi}^{\text{Res}}$$

Diffusion Pinch

- Momentum diffusion and pinch cannot serve as a momentum source
- $\nabla \cdot \prod_{r\phi}^{Res}$ constitutes intrinsic force driving parallel flow
- $\Pi_{r\phi}^{Res}$ depends on turbulence, so $\Pi_{r\phi}^{Res} \propto$ free energy source

UC San Diego

Evidence for residual stress driven flow: Macroscopic

'Cancellation' experiments in DIII-D show substantial intrinsic torque at edge

[Solomon, NF 2009]

Heat engine model: Heating $\Rightarrow \nabla T \Rightarrow \Pi_{r\phi}^{Res} \Rightarrow V_{\phi}'$

[Kosuga, PoP 2010]

In C-Mod, $\Delta V_{\phi} \propto \nabla T_i$ in Hand I-mode plasmas [Rice, PRL 2011]

Evidence for residual stress: Micro-turbulence

- Finite $\Pi_{r\phi}^{Res}$ requires symmetry breaking $\langle k_{\theta}k_{\phi}\rangle \neq 0$
- $\langle k_{\theta}k_{\phi}\rangle \neq 0$ can be induced by E'_r
- TJ-II: parallel turbulent force, $-\nabla_r \langle \tilde{v}_r \tilde{v}_\phi \rangle$, increases w/ density [Goncalves PRL 06]
- TEXTOR: significant $\Pi_{r\phi}^{Res}$; E'_r threshold for triggering $\Pi_{r\phi}^{Res}$ [Xu, NF 13]
- GK simulations predicts dipolar structure of $\Pi_{r\phi}^{Res}$ consistent w/ measured rotation profile in DIII-D

Macro
$$V'_{\phi} \xrightarrow{?} \text{Micro } \Pi^{Res}_{r\phi} \xrightarrow{?} \langle k_{\theta}k_{\phi} \rangle \neq 0$$

Tracing the Micro → Macro connection

• Trace the pathway from symmetry breaking to development of residual stress and thus onset of sheared parallel mean flow

$$\nabla n_e \longrightarrow \text{Drift} \\ \text{Wave} \longrightarrow \langle k_z k_\theta \rangle \neq 0 \longrightarrow \Pi_{rz}^{\text{Res}} \longrightarrow \langle V_z \rangle'$$

- Fundamental issues of intrinsic flow study in linear plasma devices
 - Does turbulence drive parallel flow in a linear plasma device?
 - Connection between free energy source and turbulent drive?
 - Is there direct evidence linking symmetry breaking to finite residual stress?

Experimental Setup—CSDX

- Straight, uniform magnetic field in axial direction
- Argon plasma produced by RF helicon source, P_{rf}=1.8 kW with 2 mtorr
- Insulating endplate avoid strong sheath current
- Diagnostics: Combined Mach and Langmuir probe array

CSDX: Promising testbed for drift-wave physics

Parameters	Tokamak Boundary	CSDX
$\rho_* = \rho_s / L_n$	~ 0.1	~ 0.3
$k_{\parallel}^2 v_{te}^2 / \omega v_e$	$\sim 0.5 - 5$	1 - 3
λ_{ei}/L_{conn}	$\lesssim 1$	$\sim 0.1 - 0.3$
l_{cor}/ρ_s	$\lesssim 1$	~ 1

- Some dimensionless parameters show similarity between linear device and Tokamak SOL region
- CSDX can serve as a testbed for studying drift-wave-driven residual stress and intrinsic axial flow

Outline

- Motivation: Connect Macroscopic Intrinsic Flow to Microscopic Mechanism
- Experimental Setup in a Linear Device—CSDX
- Axial Mean Flow Driven by Turbulent Stress
- Density Profile \Rightarrow Residual Stress
- Residual Stress ⇔ Spectral Symmetry Breaking
- Dynamical Symmetry Breaking Model
- Conclusion

Axial flow shear scales w/ ∇n —free energy source

- Obtain different profiles by varying B field strength
- Steepened density gradient with higher B
- V_z shear increases with increasing ∇n as B is raised
- $L_n^{-1} \gg L_{T_e}^{-1} \Rightarrow \nabla n$ is primary free energy source
- Question: Connection between ∇n and V'_z? (Rice scaling)

Axial flow shear tracks ∇n —free energy source

- Existence of ∇n threshold at ~ 1.6×10^{20} m⁻⁴
- V'_z increases sharply with ∇n after the threshold
- Reproduce a Rice-like scaling—Intrinsic flow \propto free energy source
- *Question*: Connection to turbulence?

Axial flow is driven by turbulent force

- V_z shear increases and *reverses* at edge
- $\langle \tilde{v}_r \tilde{v}_z \rangle$ shows strong inward momentum flux at higher B and ∇n
- Reynolds force $F_z^{Re} = -\nabla_r \langle \tilde{v}_r \tilde{v}_z \rangle$ increases and reverses V_z at edge
- $-\nabla_r \langle \tilde{v}_r \tilde{v}_z \rangle$ is about $\times 5$ larger than force due to axial pressure drop

Reynolds force + Collisional damping \Rightarrow V_z profile

- Ion momentum equation used to calculate V_z profile w/ no-slip b.c.
- Calculated V_z profiles agree with measured ones
- $v_{in} = n_{gas} v_{ti} \sigma_{in} \sim 3 6 \times 10^3 \text{ s}^{-1} \text{ and } \mu_{ii} = \frac{6}{5} \rho_i^2 v_{ii} \sim 3 5 \text{ m}^2/\text{s}$
- Coefficients may have small spatial variations: $v_{in} \propto T_i^{-1/2}$ and $\mu_{ii} \propto nT_i^{-1/2}$

Outline

- Motivation: Connect Macroscopic Intrinsic Flow to Microscopic Mechanism
- Experimental Setup in a Linear Device—CSDX
- Axial Flow Driven by Turbulent Stress
- Density Gradient \Rightarrow Residual Stress
- Residual Stress ⇔ Spectral Symmetry Breaking
- Dynamical Symmetry Breaking Model
- Conclusion

Axial Reynolds power tracks ∇n

- Reynolds power $P_Z^{Re} = -V_Z \nabla_r \langle \tilde{v}_r \tilde{v}_Z \rangle$ measures nonlinear energy transfer into shear flow
- When P_z^{Re} is negligible, V_z' is driven by axial pressure drop
- P_z^{Re} tracks ∇n after threshold exceeded
- Axial flow shear V'_z also increases with ∇n

Free energy
$$\Rightarrow$$
 Turbulence \Rightarrow Intrinsic flow
 $\nabla n \Rightarrow P_z^{Re} \Rightarrow V_z'$

Synthesize residual stress

• Reynolds stress is written as

 $\langle \tilde{v}_r \tilde{v}_z \rangle = -\chi_z V_z' + V_p V_z + \prod_{rz}^{Res}$

- Pinch $(V_p V_z)$ arises from toroidal effects, irrelevant in linear machine
- Synthesize residual stress $\pi^{Res} = \langle \tilde{\alpha}, \tilde{\alpha} \rangle$

 $\Pi_{rz}^{Res} = \langle \tilde{v}_r \tilde{v}_z \rangle + \langle \tilde{v}_r^2 \rangle \tau_c V_z'$

- Larger residual stress at higher B field
- Question: Link Π_{rz}^{Res} to ∇n ?

Link residual stress to ∇n : A simple model

• Parallel velocity fluctuation written as

 $\frac{\partial \tilde{v}_z}{\partial t} = -c_s^2 \nabla_z \left(\frac{e\phi}{T} + \frac{\tilde{P}}{P_0} \right) - \tilde{v}_r \frac{\partial V_z}{\partial r}$ • With adiabatic electrons, $\frac{e\tilde{\phi}}{T} \sim \frac{\tilde{n}}{n_0}$ and $\frac{\tilde{P}}{P_0} \sim \frac{\tilde{n}}{n_0}$, one obtains $\tilde{v}_z \approx -\sigma_{vT} \tau_c \frac{c_s^2}{L_z} \frac{\tilde{n}}{n_0} - \tilde{v}_r \tau_c \frac{\partial V_z}{\partial r}$

• Using mixing length theory, $\tilde{n} \sim l_c |\nabla_r n_0|$, where $l_c \sim \tilde{\nu}_r \tau_c$

$$l_c \sim \rho_s$$
 in CSDX

$$\tilde{v}_z \approx -\sigma_{vT}\tau_c \frac{c_s^2}{L_z} \frac{l_c}{n_0} |\nabla_r n_0| - \tilde{v}_r \tau_c \frac{\partial V_z}{\partial r}$$

Reynolds stress becomes

$$\langle \tilde{v}_r \tilde{v}_z \rangle \approx \left[-\sigma_{vT} \frac{c_s^2}{L_z} \frac{l_c^2}{n_0} |\nabla_r n_0| - \langle \tilde{v}_r^2 \rangle \tau_c \frac{\partial V_z}{\partial r} \right]$$

Residual Stress Diffusive term

 σ_{vT} quantifies degree of symmetry breaking

Residual stress scales with ∇n

- Use synthesized residual stress $\Pi_{rz}^{Res} = \langle \tilde{v}_r \tilde{v}_z \rangle + \langle \tilde{v}_r^2 \rangle \tau_c V_z'$
- At lower ∇n , Π_{rz}^{Res} independent of ∇n (i.e. $\sigma_{vT} \to 0$)
- At higher ∇n , Π_{rz}^{Res} increases with ∇n
- Least-square fit gives $\sigma_{vT} \sim 0.1$ at larger ∇n
- Π_{rz}^{Res} is determined by density gradient

Outline

- Motivation: Connect Macroscopic Intrinsic Flow to Microscopic Mechanism
- Experimental Setup in a Linear Device—CSDX
- Axial Flow Driven by Turbulent Stress
- Density Gradient \Rightarrow Residual Stress
- Residual Stress ⇔ Spectral Symmetry Breaking
- Dynamical Symmetry Breaking Model
- Conclusion

Demonstrate spectral asymmetry

- Joint PDF $P(\tilde{v}_r, \tilde{v}_z)$ empirically represents spectral correlator $\langle k_{\theta} k_z \rangle$
 - $\tilde{v}_r \sim k_{\theta} \tilde{\phi}$ and $\tilde{v}_z \sim k_z \tilde{P} \sim k_z \tilde{\phi}$ for adiabatic plasma
- $P(\tilde{v}_r, \tilde{v}_z)$ is isotropic at lower ∇n ; anisotropic and elongated at higher ∇n
- Evidence for symmetry breaking $\langle k_{\theta}k_{z} \rangle \neq 0$ which implies a finite residual stress

Outline

- Motivation: Connect Macroscopic Intrinsic Flow to Microscopic Mechanism
- Experimental Setup in a Linear Device—CSDX
- Axial Flow Driven by Turbulent Stress
- Density Gradient \Rightarrow Residual Stress
- Residual Stress ⇔ Spectral Symmetry Breaking
- Dynamical Symmetry Breaking Model
- Conclusion

Towards a theory of symmetry breaking

- General theory of intrinsic flow: analogy to heat engine [Kosuga PoP 10]
 - Heating $\Rightarrow \nabla T \Rightarrow \Pi_{rz}^{Res} \Rightarrow V_z'$
 - Finite Π_{rz}^{Res} needs symmetry breaking $\langle k_{\theta}k_{z} \rangle \neq 0$
- In tokamaks, symmetry breaking relies on magnetic shear

•
$$k_z \sim \frac{k_\theta x}{L_s} \Rightarrow \langle k_\theta k_z \rangle \rightarrow k_\theta^2 \langle x \rangle / L_s$$

- In CSDX, uniform axial B field and no magnetic shear
- Dynamical symmetry breaking model [Li et al, PoP 16]
 - No requirement for magnetic shear
 - Analogy to zonal flow generation via modulational instability

Dynamical symmetry breaking

Conclusion: Macro-Micro connection

- Axial flow is driven by turbulent stress
- Both axial flow shear and Reynolds power tracks ∇n
- Residual stress Π_{rz}^{Res} scales with ∇n
- Demonstrate direct link between symmetry breaking and residual stress
- Finite Π_{rz}^{Res} at zero magnetic shear emerges from dynamical symmetry breaking

Thank You

Probe configuration

Combined Mach and Langmuir probe array

• $I_{s,i}$ (pink) and ϕ_{fl} (blue)

•
$$v_z = 0.45c_s \ln \frac{\Gamma_{up}}{\Gamma_{dn}}$$

• $\tilde{v}_r = -\frac{1}{B} \frac{\Delta \tilde{\phi}_{fl}}{dy}$ and $\tilde{v}_{\theta} = \frac{1}{B} \frac{\Delta \tilde{\phi}_{fl}}{dx}$
• $n_e = \frac{I_{is}}{0.5ec_s A}$

• Measure $\langle \tilde{v}_z \tilde{v}_r \rangle$ and $\langle \tilde{v}_\theta \tilde{v}_r \rangle$ profiles simultaneously

LIF vs Mach probe measurement

Ion temperature profile

Residual stress profiles

