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Recent efforts in cosmic ray (CR) confinement and transport theory are discussed. Three problems
are addressed as being crucial for understanding the present day observations and their possible
telltale signs of the CR origin. The first problem concerns CR behavior right after their release
from a source, such as a supernova remnant. At this phase, the CRs are confined near the source by
self-emitted Alfven waves. The second is the problem of diffusive propagation of CRs through the
turbulent interstellar medium. This is a seemingly straightforward and long-resolved problem, but
it remains controversial and reveals paradoxes. A resolution based on the Chapman-Enskog asymp-
totic CR transport analysis, that also includes magnetic focusing, is suggested. The third problem is
about a puzzling sharp (!10") anisotropies in the CR arrival directions that might bear on impor-
tant clues of their transport between the source and observer. The overarching goal is to improve
our understanding of all aspects of the CR’s source escape and ensuing propagation through the
galaxy to the level at which their sources can be identified observationally. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4928941]

I. INTRODUCTION

Cosmic rays (CR) have been discovered more than a cen-
tury ago but the problem of their origin is still with us today.
The fundamental obstacle to identification of their possible
sources, such as the supernova remnant (SNR) shocks, is the
CR “black-box” propagation through the chaotic magnetic
field of the galaxy. With a possible exception for the highest
energy CR ( ! 1019 eV, whose origin is almost certainly
extragalactic1,2), most of the CRs arrive from random direc-
tions saying nothing about the locale of their sources. The
more surprising is a sharp (!10") CR anisotropy discovered
by Milagro3 with interesting ramifications due to IceCube,
ARGO-YBJ,4 HAWC,5 and some other instruments. Had it
been created in the source, it would have been completely
erased en route to the Earth. Therefore, this CR feature is
likely to be an imprint of their interaction with the ISM (inter-
stellar medium) or its local environment (heliosphere and sur-
roundings). We will discuss this later. More natural is to start
with the CR transport right at their birth place.

SNRs are widely regarded as the most probable source
of the bulk of the CRs.2 The joint analysis of the broad band
observations of the SNRs and CR background spectra at the
Earth should provide the ultimate evidence for this hypothe-
sis. The analysis faces multiple problems. First, the acceler-
ated CRs manifest themselves in SNRs only in form of
secondary emission, which is usually difficult to interpret.
For example, the super TeV-photons, carefully counted by
the atmospheric Cerenkov telescopes, to testify for the accel-
erated protons colliding with the ambient gas,6,7 can easily
be confused with the inverse Compton (IC) photons up-
scattered by accelerated electrons. If this is the case, not
much weight can be added to the argument for the CRs ori-
gin in the SNRs, as electrons comprise only a small fraction
(!1%# 2%) of the CR spectrum. Similarly, in the GeV

energy band the emission may come from electron
Bremsstrahlung. The key in both cases, however, is a dense
gas in the SNR surroundings, often present in form of adja-
cent molecular clouds (MC). They provide a target for the pp
reactions with accelerated protons. Photons, produced in this
reaction should thus come from MCs, illuminated by the CR
protons that have, in turn, escaped from the source. By con-
trast, the IC electron emission should come from the entire
volume they fill, as the low-energy photons (such as CMB)
are present everywhere. To use this simple but powerful
diagnostic tool for identification of the source of emission
detected by modern ground-based instruments and space
observatories (such as the Cerenkov telescopes HESS,
VERITAS, MAGIC and Fermi-LAT, PAMELA, Agile
spacecraft observatories8–14), we must have an accurate
understanding of the CR propagation from their sources to
the adjacent MCs.

The next problem is the subsequent interaction of the
CRs with the MC, as their confinement inside the cloud is
generally deteriorated due to the collisional damping of the
Alfven waves, which otherwise would prevent CRs from
spreading further rapidly. In addition, this interaction reveals
important clues as to how the spectrum of CRs, illuminating
the MC is different from that in the source, most importantly,
in form of spectral breaks. This aspect of the CR interaction
with MC and their visibility in the gamma-ray band has been
discussed in one of the earlier APS Plasma Physics meet-
ings.15 Here, we will focus on the ensuing propagation of the
CR to the Earth and their spectral features that they can ac-
quire both in the source and on the way to us.

Measurements of the CR background spectrum have
also advanced significantly. Much progress has been made in
isolating different elements in it. One of the most striking
results was the $0:1 difference between the rigidity (mo-
mentum to charge ratio) spectral indices of protons and He2þ
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ions. Such deviations have been apparent for some time, e.g.,
Ref. 16, but the Pamela spacecraft observatory measured it
with a three-digit accuracy in the 100 GeV energy band,12

which posed a strong challenge to the CR acceleration and
propagation models. Indeed, the ultrarelativistic parts of the
rigidity spectra must be identical, if protons and He2þ ions
are accelerated and transported via electromagnetic interac-
tions under identical conditions. Since He2þ has a 0.1-flatter
spectrum, the difference may be due to its spallation, biased
for lower energies.17 However, such scenario would prob-
ably require stretching the model parameters too much.18

Other interesting possibilities discussed in the literature
include the contribution from multiple SNRs of different
types with somewhat different CR spectra12,19–21 and vari-
able p/He2þ mix along the shock path.22,23 A “plasma phys-
ics” solution that targets the nonrelativistic phase of
acceleration of both species, where the argument of equal ri-
gidity spectra is irrelevant, was suggested in Ref. 24. This
explanation is advantageous according to Occam’s razor, as
it relies on the collisionless shock intrinsic properties and
does not require any of the above special conditions.

Apart from the elemental composition, other spectral
signatures, such as the spectral hardening above E ! 200
GeV, have been studied12,17,25 and provided important clues
for the energy dependent CR transport. Stochasticity of CR
sources and inhomogeneity of transport through the galaxy is
now also included in the models.26 These are important for
understanding the large scale CR anisotropy. The most puz-
zling aspect of the anisotropy in the CR arrival directions is,
in my view, the sharp anisotropy or the so-called Milagro
“hot spots” which I address later in this brief review.

The remainder of the paper is organized as follows. In
Sec. II, the confinement of CRs released from the source is
addressed. In Sec. III, an equation describing diffusive prop-
agation including a hyperdiffusive term is presented and its
relation to the so-called “telegrapher” term in the CR trans-
port equation is clarified. In Sec. IV, possible mechanisms
for building a sharp CR anisotropy during their propagation
from the source are discussed.

II. SELF-CONFINEMENT OF CRs AROUND SNRs

It is widely believed that CRs are accelerated in SNR
shocks by the diffusive mechanism (DSA). The backbone of
the DSA is a self-confinement of accelerated particles sup-
ported by their scattering off magnetic irregularities that par-
ticles drive by themselves while streaming ahead of the
shock. Logically, this process should also control the ensuing
propagation (escape) of CRs, at least until their density drops
below the wave instability threshold. At the same time, no
consensus has been reached so far as to how CRs escape the
accelerator. The dividing lines seem to run across the follow-
ing issues: (i) does the escape occur isotropically or along
the local magnetic field? (ii) does the scattering by the back-
ground MHD turbulence control the CR propagation alone
or self-excited waves need to be included? (iii) are CRs, that
escape SNR, peaked at the highest energy or lower energy
CRs escape as well?22,27–32

Adhering to the self-confinement idea, we consider the
model that explicitly includes the self-excited waves.
Moreover, in the regions where magnetic perturbations are
weak, i.e., dB2=B2 & 1, a field aligned CR transport domi-
nates, as the perpendicular diffusion is suppressed, j?
’ ðdB=BÞ2jB & jk ’ jBðdB=BÞ#2. Here, jB is the Bohm
diffusion coefficient jB ¼ crg=3 with rg being the particle
gyroradius. Taking into account the condition ðdB2=B2ÞISM

& 1, such regime is inevitable outside the source where
dB=B"1, as well as at later times of CR propagation, when
they are spread over a large volume and the waves are driven
weakly. Moreover, the self-confinement of CRs propagating
away from the accelerator, as described below, is the contin-
uation of physically the same process long believed to be at
work inside the accelerator, as first suggested by Bell.33

From a mathematical standpoint, our treatment below gener-
alizes Bell’s steady state solution, obtained in the shock
frame, to the time dependent solution for the CR cloud
expanding further out. This being said, we use the following
equations that describe the CR diffusion and wave genera-
tion self-consistently:34

@

@t
PCR pð Þ ¼

@

@z

jB

I

@PCR

@z
; (1)

@

@t
I ¼ #CA

@PCR

@z
# CI; (2)

where CA is the Alfv!en velocity. The dimensionless CR par-
tial pressure PCR is used instead of their distribution function
f ðp; tÞ

PCR ¼
4p
3

2

qC2
A

vp4f ; (3)

where v and p are the CR speed and momentum, and q—the
plasma density. The total CR pressure is normalized to dlnp,
similar to the wave energy density I

hdB2i
8p
¼ B2

0

8p

ð
I kð Þdlnk ¼ B2

0

8p

ð
I pð Þdlnp:

The last relation implies a simplified wave-particle reso-
nance condition, krgðpÞ ¼ const ! 1. Most of the works on
CR self-confinement (see Ref. 35 for a review) use equations
largely similar to Eqs. (1) and (2), but different assumptions
are made regarding geometry of particle escape from the
source, the character and strength of the wave damping C,
and the role of quasilinear wave saturation. A reasonable
choice of the damping mechanism is the Goldreich-Shridhar
(GS) MHD cascade,36 which seems to be appropriate in I"1
regime.37–39 The damping rate in this case is C ¼ CA

ffiffiffiffiffiffi
k=l

p
,

where l is the outer scale of turbulence, which may be as
large as 100 pc (see, however, Sec. IV). As C does not
depend on I and can be considered also as coordinate inde-
pendent, it allows the following (“quasilinear”) integral of
the system given by Eqs. (1) and (2):

PCR z; tð Þ ¼ PCR0 zð Þ #
jB

CA

@

@z
ln

I z; tð Þ
I0 zð Þ

: (4)
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Here, PCR0ðzÞ and I0ðzÞ are the initial distributions of the CR
partial pressure and the wave energy density (see Ref. 34 for
more general treatment). Substituting PCR in Eq. (2), we
arrive at the following diffusion equation for I

@I

@t
¼ @

@z

jB

I

@I

@z
# CI # CA

@PCR0

@z
:

Outside of the region where PCR0 6¼ 0; the last term on the
r.h.s. is absent, while the second term may be eliminated by
replacing I exp ðCtÞ! I;

Ð t
0 exp ðCtÞdt! t. However, if C is

taken in a GS-form, it is fairly small due to the factorffiffiffiffiffiffiffiffi
rg=l

p
& 1. We may simply neglect it. The solution for I

and PCRðz; tÞ may be found in an implicit form (see Ref. 34
for details). However, there exists a very accurate convenient
interpolation formula that can be represented as follows:

PCR ¼
2jB pð Þ
C3=2

A

ffiffiffiffi
at
p f5=3 þ DNLð Þ5=6

h i#3=5

e#f2=4DISM ; (5)

where a is the size of the initial CR cloud, f ¼ z=
ffiffiffiffiffiffiffiffiffiffi
CAat
p

,
DNL ¼ FðPÞ * DISM exp ð#PÞ, with P being a normalized
integrated pressure

P ¼ CA

jB

ð1

0

PCRdz:

The function F behaves as follows: FðPÞ ’ 2e $ 5:4, for
P+ 1 and FðPÞ ’ 2pP#2, for P& 1. Here, DISM is a nor-
malized background diffusivity DISM ¼ jB=aCAIISM.

To summarize these results, the self-regulated CR
escape from a source is characterized by their distribution
(partial pressure) comprising the following three zones: (i) a
quasi-plateau (core) at small z=

ffiffi
t
p

<
ffiffiffiffiffiffiffiffiffi
DNL

p
of the height

!ðDNLtÞ#1=2. It is elevated by a factor !P#1 exp ðP=2Þ
+ 1, compared to the test particle solution because of the
strong quasi-linear suppression of the CR diffusion coeffi-
cient with respect to its background (test particle) value
DISM : DNL ! DISM exp ð#PÞ, (ii) next to the core, whereffiffiffiffiffiffiffiffiffi

DNL

p
< z=

ffiffi
t
p

<
ffiffiffiffiffiffiffiffiffiffi
DISM

p
, the profile is scale invariant,

PCR / 1=z. The CR distribution in this “pedestal” region is
fully self-regulated and independent of P and DISM for
P+ 1, (iii) the tail of the distribution at z=

ffiffi
t
p

>
ffiffiffiffiffiffiffiffiffiffi
DISM

p

is similar in shape to the test particle solution in 1D but it
saturates with P+ 1, so that the CR partial pressure is
/ ðDISMtÞ#1=2 exp ð#z2=4DISMtÞ, independent of the strength
of the CR source P, in contrast to the test-particle regime in
which it scales as / P (P"1). Because of the CR diffusivity
reduction, the half-life of the CR cloud is increased and its
width is decreased, compared to the test particle solution.
Depending on the functions PðpÞ and DISMðpÞ, the resulting
CR spectrum generally develops a spectral break for the
fixed values of z and t at the CR momentum p determined by
the following relation: z2=t ! DNLðpÞ ! DISM exp ð#PÞ.

III. DIFFUSIVE AND HYPERDIFFUSIVE CR
TRANSPORT WITH MAGNETIC FOCUSING

Propagating away from their sources, CRs are pitch-
angle scattered on weak ISM magnetic irregularities. A

seemingly straightforward reduction of kinetic CR descrip-
tion to their spatial transport leads to a diffusive approxima-
tion which has the well-known defect of causality violation.
There have been attempts at an alternative approach based
on the “telegrapher” equation. However, its derivations often
lack rigor and transparency and had not been performed to
the required (as we show below, fourth order) accuracy. The
problem can be formulated very plainly: How to describe
CR transport by only their isotropic component, when the
anisotropic one is suppressed by the frequent scattering?

The angular distribution of CRs is described by the func-
tion f ðl; t; zÞ40,41

@f

@t
# @

@l
D lð Þ 1# l2

$ % @f

@l
¼ #e l

@f

@z
þ r

2
1# l2
$ % @f

@l

& '
:

(6)

Here, e ¼ v=l! is the small parameter of the problem, with v
being the particle velocity, l—characteristic scale, and !—
scattering frequency. The dimensionless magnetic mirror
inverse scale r ¼ #B#1@B=@z, z points in the local field
direction and is measured in the units of l, time in !#1, and l
is the cosine of the pitch angle, while DðlÞ ! 1 depends on
the spectrum of magnetic fluctuations. The isotropic reduc-
tion scheme requires a multi-time asymptotic (Chapman-
Enskog) expansion. So, we introduce a set of formally inde-
pendent time variables t! t0; t1;…, so that

@

@t
¼ @

@t0
þ e

@

@t1
þ e2 @

@t2
;…; (7)

which leads to the following hierarchy of equations:

@fn

@t0
# @

@l
D lð Þ 1# l2

$ % @fn
@l
¼ #l

@fn#1

@z
# r

2
1# l2
$ %

, @fn#1

@l
#
Xn

k¼1

@fn#k

@tk

-Ln#1 f½ / t0;…; tn; l; zð Þ; (8)

where f ¼ f0 þ ef1 þ e2f2 þ * * * and the conditions fn<0 ¼ 0
are implied. Using the above expansion, one may obtain an
equation for the isotropic part f0 ¼ hf i - ð1=2Þ

Ð
fdl to arbi-

trary order in e. By construction, in no order of approxima-
tion will higher time derivatives emerge, as was obviously
devised in the Chapman-Enskog method. We terminate this
process at the fourth order, e4. This is the lowest approxima-
tion required to clarify the origin of the telegrapher equation.
Higher order terms can, in principle, be calculated at the
expense of involved algebra but such calculations would be
of no avail. So, our result is as follows:42

@f0
@t
¼ e2

4
@0z

(
j# e@00z hlW2i

# e2

2

)
@00z
$ %2hW2 j# U0ð Þi

# 1

2
@0z@z

*
j 1# lð Þ þ U½ /2

D 1# l2ð Þ

+,-
@f0

@z
; (9)
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where @0z ¼ @z þ r and @00z ¼ @z þ r=2. The coefficients
are defined as @W=@l ¼ 1=D; hWi ¼ 0, U0ðlÞ - @U=@l
- ð1# l2Þ=D, Uð#1Þ ¼ 0; and j ¼ ð1=2ÞUð1Þ.

A. Producing the telegrapher term

Within the employed Chapman-Enskog expansion, the
equation for f0 remains evolutionary in all orders of e, so no
telegrapher term appears. Such term is usually obtained ei-
ther without clear ordering, e.g., Ref. 43, using specific
DðlÞ, e.g., Ref. 44, or by truncation of eigenfunction expan-
sion, where the discarded terms may be of the same order in
small parameter as those retained, e.g., Refs. 45 and 46. In
most of these treatments, care has not been exercised to elim-
inate the short time scales which are irrelevant to the long-
time evolution of the isotropic part of the CR distribution,
sought by these reduction schemes. Instead, they retain the
second time derivative which changes the type of the result-
ing transport equation to hyperbolic. As we show below, the
second order time derivative term can be recovered from the
Chapman-Enskog expansion.

To resolve the above controversy, we simplify Eq. (9)
by removing terms unimportant for the controversy. First,
we may set r¼ 0 and assume the scattering symmetry,
Dð#lÞ ¼ DðlÞ, to remove the term !e3, as the @3=@z3 term
is not included in the telegrapher equation derived for mag-
netic focusing by, e.g., Ref. 43. Using these simplifications
and the slow time T ¼ e2t=4, Eq. (9) rewrites as

@f0

@T
¼ j

@2f0

@z2
# e2K

@4f0

@z4
; (10)

where K is the hyper-diffusion coefficient

K ¼ 1

2

*
W2 j# U0ð Þ # 1

2

j 1# lð Þ þ U½ /2

D 1# l2ð Þ

+
: (11)

To the same order in e& 1, the last equation can be rewrit-
ten as follows:

@f0

@T
¼ j

@2f0

@z2
# s

@2f0

@T2
; (12)

where s ¼ e2K=j2. This equation has, indeed, the form of a
telegrapher equation. However, the comparison of Eq. (10)
with, e.g., the telegrapher equation (15) in Ref. 43 shows
that the coefficient s in Eq. (12) is substantially different.
The reason is that the equation of Ref. 43 has been obtained
by a formal iteration not accounting for all the fourth order
terms, the telegrapher term actually originates from. Note
that44 give an expression for s which is consistent with the
result above.42 More importantly, the telegrapher term in
Eq. (12) has a small parameter (at highest derivative). The
role of such terms is known from the boundary layer prob-
lems. They become crucial near and inside the boundary
layer, thus determining its structure and scale. In the context
of the telegrapher equation, the boundary layer translates
into the initial relaxation phase of the CR distribution. This
relaxation is associated with the small scale CR anisotropy
in fn which quickly decays. It should be noted that if a

simplified collision term (BGK, or s-approximation) is used
instead of the pitch-angle diffusion in Eq. (6), the telegra-
pher equation can be accurately derived with no recourse to
hyperdiffusion.47

To conclude this section, by comparison with the teleg-
rapher equation, the classic Chapman-Enskog is a consider-
ably more suitable and flexible tool to describe the long-time
CR propagation, although the telegrapher version (with
corrected transport coefficient) may still be useful for study-
ing the magnetically focused CR transport, e.g., Ref. 48.
Efforts on improving the CR diffusion models, where their
drawbacks are important, need to address the lower level
transport, including anisotropic component of the CR distri-
bution, directly. Recent work can be found in, e.g., Ref. 49
and in Sec. IV. Splitting the particle distribution in scattered
and unscattered categories is another useful approach, e.g.,
Refs. 50 and 51. However, when the diffusive treatment is
well within the method’s validity range (weakly anisotropic
spatially smooth CR distributions) neither the telegrapher
term nor hyperdiffusivity is essential to the CR transport (see
Ref. 42 for more discussion).

IV. SMALL-SCALE CR ANISOTROPY

CR acceleration (e.g., DSA) and propagation models, as
discussed in Secs. II and III, typically predict only a large
scale, dipolar anisotropy. It would emerge as a small f1 / l
correction to f0 + f1, produced by localized sources, and can
be easily obtained within the treatment outlined in Sec. III.
The same is true for the CR self-confinement problem con-
sidered in Sec. II, if the small anisotropic correction is taken
into account. Now that we expect the CR propagation in the
essentially stochastic magnetic fields to be largely ergodic,
there is no obvious reason for a significantly sharper than the
dipolar anisotropy. Yet observations show that narrow
(!10") CR beams do exist.3–5 They shed new lights on the
CR propagation from, and even their acceleration in, putative
sources and need to be understood.

A number of scenarios have been suggested to explain
the tightly collimated beams. They include magnetic nozzle
focusing,52 propagation effects from local SNR,53 accelera-
tion in the heliotail,54,55 and heliosheath propagation
effects.56 Although being plausible, in principle, those
explanations impose significant constraints on the relevant
parameters and processes. For example, the magnetic mirror
ratio must be rather strong to produce !10" anisotropy, and
quite a strong magnetic field in the heliotail is required to
confine 10 TeV protons and makes the proposed acceleration
mechanism work efficiently. Conceptually, different scenar-
ios57–59 essentially attempt at generating small-scale anisot-
ropy out of the large-scale one by exploiting aspects of
interactions between the CRs and MHD turbulence in the
ISM. At the first glance, precisely the opposite should occur
and the task is clearly of a kind of “squeezing blood out of
stone.” From a purely mathematical perspective, using cer-
tain properties of the particle propagator, these models pro-
duce multipoles out of the dipolar component over a long
distance (up to a few 100 pc) of particle propagation. At this

091505-4 M. A. Malkov Phys. Plasmas 22, 091505 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
137.110.33.153 On: Thu, 27 Aug 2015 17:06:17



point, however, the approaches deviate strongly from one
another.

In Ref. 59, an interesting technique is employed to gen-
erate higher multipoles from the available dipole by using
the Liouville’s theorem. It is not clear, however, whether the
introduction of a simplified collision term in a BGK-form is
justified for the treatment of the small-scale anisotropy. The
preferred collision operator is the differential one which is
much more efficient at smoothing small-scale anisotropies
(see, e.g., Sec. III). Attacking the same problem from a dif-
ferent angle, the authors of Ref. 58 rightly state that,
although the scattering fields are random, we do not really
need to perform an ensemble average, as the current MHD
turbulence is static for the limited time observations and
fast CRs. There are at least two tests to propose for this ex-
planation. First, as this is actually a magnetic lensing effect
with a very long particle path (L+ rg), small variations of
magnetic configuration may produce significant changes
in arrival directions of narrow beams. Indeed, the relevant
scale of the turbulent field is rg, so the time scale is s ! rg=
ðVA þ UHSÞ with the Alfven and the heliosphere velocities in
denominator. The median Milagro energy is !1 TeV, so for
VA þ UHS ’ 50 km/s and B ¼ 4lG one obtains s"10 yrs.
This may be close enough to the time difference between
Milagro and ARGO/HAWC more recent observations. And
yes, changes are being observed but they are not quite signif-
icant and HAWC is not fully operational yet, so more obser-
vations are required and they are underway.5 The second
test has, in fact, already been performed by the authors of
Ref. 58. Since CRs interact with the static magnetic fields,
their dynamics may be regarded as almost ergodic (strong
orbit mixing) on every isoenergetic surface in phase space.
Small deviations from ergodicity are responsible for the hot
spots in arrival directions. Moving from one energy surface
to the next by DE ! E should strongly decorrelate the spots,
since Drg ! rg for them. This is, indeed, observed in simula-
tions carried out in Ref. 58. The upcoming improvements in
the energy spectra measurements5 should substantiate such
tests quantitatively and help to discriminate between differ-
ent mechanisms.

The approach of Ref. 57 is also based on the CR interac-
tion with the ISM turbulence, but includes ensemble averag-
ing, thus removing the above concerns with the short time
variability (except for the possible heliospheric variations60).
The beam direction is assumed to be along the local large
scale magnetic field (lloc + rg), to minimize the curvature
and gradient drifts, that would otherwise evacuate particles
from the magnetic tube connecting observer with the source,
since the drifts increase with the pitch angle. The following
assumptions are made to obtain the beam collimation: (i)
large scale anisotropic distribution of CRs (generated, for
example, by a nearby accelerator, such as a SNR, magneti-
cally connected with the Earth) and (ii) Goldreich-Shridhar61

(GS) cascade of Alfvenic turbulence originating from a spe-
cific scale l, which is the longest scale relevant to the wave-
particle interactions.

It is found that the CR distribution develops a character-
istic angular shape consisting of a large scale anisotropic
part (first eigenfunction of the pitch-angle scattering

operator) superposed by a beam, sharply focused in the mo-
mentum space along the local field. The large scale anisot-
ropy carries the momentum dependence of the source. The
following four quantities are tightly constrained by the turbu-
lence scale l: (1) the beam angular width that increases with
momentum as / ffiffiffi

p
p

, (2) its fractional excess (with respect
to the large scale anisotropic component) that increases as
/ p, (3) the maximum momentum, beyond which the beam
is destroyed via instability, pmax. If the large scale anisotropy
originates from a nearby source, magnetically connected
with the Earth, the model predicts (4) the range of possible
distances to this source, lS ! 100# 200 pc. If such source is
absent, this range corresponds to the beam collimation
length, also a few 100 pc, with the large scale anisotropy
originating from the smooth omnigalactic CR gradient. This
scale is consistent with the beam collimation length,
obtained numerically in Ref. 58.

If the turbulence outer scale l is considered unknown, it
can be inferred from any of the first three quantities (1–3) as
measured by MILAGRO. All the three quantities consis-
tently imply the same scale l ’ 1 pc. The calculated beam
maximum momentum encouragingly agrees with that meas-
ured by MILAGRO (pmax ! 10 TeV/c). The theoretical
value for the angular width of the beam is found to be
D# ’ 4

ffiffi
"
p

, where " ¼ rgðpÞ=l& 1. The beam fractional
excess related to the large scale anisotropic part of the CR
distribution is ’ 50". Both quantities also match the Milagro
results near its median energy, that is, for E ! 1# 2 TeV.
So, the beam has a momentum scaling that is one power
shallower than the CR carrier, it is drawn from. One interest-
ing conjecture from the l ’ 1 pc requirement is that the pro-
ton “knee” at ’ 3 PeV and the beam are of the same origin,
as these particles may provide the required outer scale for
the MHD turbulence, rg ! l. Another possibility is to employ
the spiral-arm 1-pc value for l, as suggested in Ref. 62.
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